- 51.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(四十一) 数学归纳法
一、选择题
1.(2015·山东德州一模)用数学归纳法证明“1+2+22+…+2n+2=2n+3-1”,在验证n=1时,左边计算所得的式子为( )
A.1 B.1+2
C.1+2+22 D.1+2+22+23
2.用数学归纳法证明不等式1+++…+>(n∈N*)成立,其初始值至少应取( )
A.7 B.8
C.9 D.10
3.凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n+1)为( )
A.f(n)+n+1 B.f(n)+n
C.f(n)+n-1 D.f(n)+n-2
4.(2015·上海闸北二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( )
A.n+1 B.2n
C. D.n2+n+1
5.在数列{an}中,a1=,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为( )
A. B.
C. D.
6.利用数学归纳法证明“(n+1)(n+2) …·(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是( )
A.2k+1 B.2(2k+1)
C. D.
二、填空题
7.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.
8.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上的项为______________________________.
9.设数列{an}的前n项和为Sn,且对任意的自然数n都有:(Sn-1)2=anSn,通过计算
S1,S2,S3,猜想Sn=________.
10.设平面上n个圆周最多把平面分成f(n)片(平面区域),则f(2)=________,f(n)=________.(n≥1,n∈N*)
三、解答题
11.已知点Pn(an,bn)满足an+1=an·bn+1,bn+1=(n∈N*),且点P1的坐标为(1,-1).
(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
12.设数列{an}满足an+1=a-nan+1(n∈N*).
(1)当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项公式;
(2)当a1≥3时,证明:对所有的n≥1,有an≥n+2.
答案
1.选D 当n=1时,左边=1+2+22+23.
2.选B 左边=1+++…+==2-,代入验证可知n的最小值是8.
3.选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n-2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.
4.选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.
5.选C 由a1=,Sn=n(2n-1)an求得a2==,a3==,a4==.猜想an=.
6.选B 当n=k(k∈N*)时,
左式为(k+1)(k+2) ·…·(k+k);
当n=k+1时,左式为(k+1+1)·(k+1+2)·…·(k+1+k-1)·(k+1+k)·(k+1+k+1),
则左边应增乘的式子是=2(2k+1).
7.解析:n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立.
答案:2k+1
8.解析:当n=k时左端为1+2+3+…+k+(k+1)+(k+2)+…+k2,
则当n=k+1时,左端为
1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,
故增加的项为(k2+1)+(k2+2)+…+(k+1)2.
答案:(k2+1)+(k2+2)+…+(k+1)2
9.解析:由(S1-1)2=S得:S1=;
由(S2-1)2=(S2-S1)S2得:S2=;
由(S3-1)2=(S3-S2)S3得:S3=.
猜想Sn=.
答案:
10.解析:易知2个圆周最多把平面分成4片;n个圆周最多把平面分成f(n)片,再放入第n+1个圆周,为使得到尽可能多的平面区域,第n+1个应与前面n个都相交且交点均不同,有n条公共弦,其端点把第n+1个圆周分成2n段,每段都把已知的某一片划分成2片,即f(n+1)=f(n)+2n(n≥1),所以f(n)-f(1)=n(n-1),而f(1)=2,从而f(n)=n2-n+2.
答案:4 n2-n+2
11.解:(1)由题意得a1=1,b1=-1,
b2==,a2=1×=,∴P2.
∴直线l的方程为=,即2x+y=1.
(2)证明:①当n=1时,2a1+b1=2×1+(-1)=1成立.
②假设n=k(k∈N*)时,2ak+bk=1成立.
则2ak+1+bk+1=2ak·bk+1+bk+1=·(2ak+1)===1,
∴当n=k+1时,2ak+1+bk+1=1也成立.
由①②知,对于n∈N*,都有2an+bn=1,即点Pn在直线l上.
12.解:(1)由a1=2,
得a2=a-a1+1=3,
由a2=3,得a3=a-2a2+1=4,
由a3=4,得a4=a-3a3+1=5,
由此猜想an的一个通项公式:an=n+1(n≥1).
(2)证明:用数学归纳法证明:
①当n=1时,a1≥3=1+2,不等式成立.
②假设当n=k(k∈N*)时不等式成立,
即ak≥k+2,
那么,ak+1=ak(ak-k)+1≥(k+2)(k+2-k)+1≥k+3,
也就是说,当n=k+1时,ak+1≥(k+1)+2.
根据①和②,对于所有n≥1,都有an≥n+2.