- 75.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.2.2 第2课时 等差数列习题课
[A 基础达标]
1.在数列{an}中,a1=15,3an+1=3an-2,则该数列中相邻两项的乘积为负值的项是( )
A.a21和a22 B.a22和a23
C.a23和a24 D.a24和a25
解析:选C.因为an+1=an-,所以数列{an}是等差数列,且公差为-,
所以an=15+(n-1)·.因为a23=,a24=-,所以a23a24<0.
2.已知等差数列{an}中,|a5|=|a9|,公差d>0,则使Sn取得最小值的正整数n的值是( )
A.4或5 B.5或6
C.6或7 D.7或8
解析:选C.依题意得a5<0,a9>0,且a5+a9=0⇒2a1+12d=0⇒a1+6d=0,即a7=0,故前6项与前7项的和相等,且最小.
3.已知数列{an}的通项公式an=26-2n,则使其前n项和Sn最大的n的值为( )
A.11或12 B.12
C.13 D.12或13
解析:选D.因为an=26-2n,所以an-an-1=-2,所以数列{an}为等差数列.又a1=24,d=-2,所以Sn=24n+×(-2)=-n2+25n=-+.又n∈N+,所以当n=12或13时,Sn最大.
4.数列{an}满足:a1=0,an+1=(n∈N+),则a2 018=( )
A.0 B.-
C. D.
解析:选B.由a1=0,an+1=,令n=1,得a2==-;令n=2,得a3==;令n=3,得a4==0=a1,所以数列{an}是周期为3的数列,所以a2 018=a3×672+2=a2=-,故选B.
5.已知数列{an}:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,若把该数列的每一项除以4所得的余数按相对应的顺序组成新数列{bn},则b2 018=( )
A.0 B.1
C.2 D.3
4
解析:选B.将数列1,1,2,3,5,8,13,…的每一项除以4所得的余数分别为1,1,2,3,1,0,1,1,2,3,1,0,…,即新数列{bn}是周期为6的周期数列,所以b2 018=b336×6+2=b2=1.故选B.
6.已知数列{an}满足an+1=an-,且a1=5,设{an}的前n项和为Sn,则使得Sn取得最大值的序号n的值为________.
解析:由题意可知数列{an}的首项为5,公差为-的等差数列,所以an=5-(n-1)=,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以Sn取最大值时,n=7或8.
答案:7或8
7.等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=________.
解析:法一:S9=S4,即=,
所以9a5=2(a1+a4),
即9(1+4d)=2(2+3d),
所以d=-,
由1-(k-1)+1+3·=0,得k=10.
法二:S9=S4,所以a5+a6+a7+a8+a9=0,所以a7=0,从而a4+a10=2a7=0,所以k=10.
答案:10
8.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.以Sn表示{an}的前n项和,则使得Sn达到最大值的n=________.
解析:由a1+a3+a5=105,得3a3=105,即a3=35.
由a2+a4+a6=99,得3a4=99,即a4=33.
所以d=-2,an=a4+(n-4)×(-2)=41-2n,则a1=39.
所以Sn===-n2+40n=-(n-20)2+400.
所以当n=20时,Sn取最大值.
答案:20
9.在等差数列{an}中,a3=2,3a2+2a7=0,其前n项和为Sn.求:
(1)等差数列{an}的通项公式;
(2)Sn,n为何值时,Sn最大.
解:(1)设等差数列{an}的公差为d,
4
根据题意,得a1+2d=2,5a1+15d=0,
解得a1=6,d=-2.
所以数列{an}的通项公式为an=-2n+8.
(2)由第一问可知Sn=6n+·(-2)=-n2+7n=-+.
因为S3=-9+21=12,S4=-16+28=12,
所以当n=3或n=4时,Sn最大.
10.已知数列{an}的通项公式an=31-3n,求数列{|an|}的前n项和Hn.
解:设{an}的前n项和为Sn.
由an=31-3n可得Sn=-n2+n.
由an≥0,解出n≤≈10.3.
当n≤10时,Hn=Sn=-n2+n;
当n≥11时,Hn=2S10-Sn=n2-n+290.
所以Hn=
[B 能力提升]
11.设等差数列{an}满足3a8=5a13,且a1>0,则前n项和Sn中最大的是( )
A.S10 B.S11
C.S20 D.S21
解析:选C.设等差数列{an}的公差为d,由3a8=5a13,即3(a1+7d)=5(a1+12d),得a1=-d>0,所以d<0,则an=a1+(n-1)d=-d+(n-1)d.由an<0,得n>=20.5,即从第21项开始为负数,故S20最大.
12.“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________.
解析:由题意可得an+an+1=5,所以an+1+an+2=5.所以an+2-an=0.因为a1=2,所以a2=5-a1=3.所以当n为偶数时,an=3;当n为奇数时,an=2.所以a18=3.
答案:3
13.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.
(1)求公差d的取值范围;
4
(2)问前几项的和最大,并说明理由.
解:(1)因为a3=12,所以a1=12-2d,
因为S12>0,S13<0,
所以即
所以-0,S13<0,
所以所以所以a6>0,
又由第一问知d<0.
所以数列前6项为正,从第7项起为负.
所以数列前6项和最大.
14.(选做题)在等差数列{an}中,a16+a17+a18=a9=-18,其前n项和为Sn,
(1)求Sn的最小值,并求出Sn取最小值时n的值;
(2)求Tn=|a1|+|a2|+…+|an|.
解:(1)因为a16+a17+a18=a9=-18,
所以a17=-6.又a9=-18,所以d==.
首项a1=a9-8d=-30.所以an=n-.
若前n项和Sn最小,则
即所以n=20或21.
这表明:当n=20或21时,Sn取最小值.最小值为S20=S21=-315.
(2)由an=n-≤0⇒n≤21.
所以当n≤21时,Tn=-Sn=(41n-n2),
当n>21时,Tn=-a1-a2-…-a21+a22+…+an
=Sn-2S21=(n2-41n)+630.
故Tn=
4