- 1.66 MB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
北京四中2020届高三第二学期统练数学试卷
一.选择题(共10小题,每小题4分,共40分)
1.tan570°=( )
A. B. - C. D.
【答案】A
【解析】
【分析】
直接利用诱导公式化简求解即可.
【详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.
故选:A.
【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.
2.已知等比数列满足,,则( )
A. B. C. D.
【答案】B
【解析】
由a1+a3+a5=21得 a3+a5+a7=,选B.
3.下列选项中,说法正确的是( )
A. “”的否定是“”
B. 若向量满足 ,则与夹角为钝角
C. 若,则
D. “”是“”的必要条件
【答案】D
【解析】
【分析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.
【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;
选项B若向量满足,则与的夹角为钝角或平角,因此不正确.
选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;
选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.
故选:D.
【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.
4.已知a>0,b>0,a+b =1,若 α=,则的最小值是( )
A. 3 B. 4 C. 5 D. 6
【答案】C
【解析】
【分析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.
【详解】∵a>0,b>0,a+b=1,
∴,
当且仅当时取“=”号.
答案:C
【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.
5.某四棱锥的三视图如图所示,该几何体的体积是( )
A. 8 B. C. 4 D.
【答案】D
【解析】
【分析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.
【详解】根据三视图知,该几何体是侧棱底面四棱锥,如图所示:
结合图中数据知,该四棱锥底面为对角线为2的正方形,
高为PA=2,
∴四棱锥的体积为.
故选:D.
【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.
6.函数 的部分图象如图所示,则 ( )
A. 6 B. 5 C. 4 D. 3
【答案】A
【解析】
【分析】
根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.
【详解】由图象得,令=0,即=kπ,
k=0时解得x=2,
令=1,即,解得x=3,
∴A(2,0),B(3,1),
∴,
∴
故选:A.
【点睛】
本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.
7.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为
A. B. C. D.
【答案】A
【解析】
【分析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.
【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.
故选A.
【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.
8.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=( ).
A. 1 B. C. 2 D. 3
【答案】C
【解析】
试题分析:抛物线的准线为,双曲线的离心率为2,则,
,渐近线方程为,求出交点,,
,则;选C
考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;
9.在中,分别为所对的边,若函数
有极值点,则的范围是( )
A. B.
C. D.
【答案】D
【解析】
试题分析:由已知可得有两个不等实根.
考点:1、余弦定理;2、函数的极值.
【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.
10.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )
A. 1 B. C. D. 0
【答案】B
【解析】
【分析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬6步回到起点,周期为6.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.
【详解】由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,
即过6段后又回到起点,
可以看作以6为周期,
由,
白蚂蚁爬完2020段后到回到C点;
同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,
黑蚂蚁爬完2020段后回到D1点,
所以它们此时距离为.
故选B.
【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.
二.填空题(共5小题,每小题5分,共25分)
11.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x- y的值为________.
【答案】
【解析】
【分析】
根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.
【详解】根据茎叶图中的数据,得:
甲班5名同学成绩的平均数为,
解得;
又乙班5名同学的中位数为73,则;
.
故答案为:.
【点睛】
本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.
12.在的二项展开式中,x的系数为________.(用数值作答)
【答案】-40
【解析】
【分析】
由题意,可先由公式得出二项展开式的通项,再令10-3r=1,得r=3即可得出x项的系数
【详解】的二项展开式的通项公式为,
r=0,1,2,3,4,5,
令,
所以的二项展开式中x项的系数为.
故答案为:-40.
【点睛】本题考查二项式定理的应用,解题关键是灵活掌握二项式展开式通项的公式,属于基础题.
13.直线xsinα+y+2=0的倾斜角的取值范围是________________.
【答案】
【解析】
因为sin α∈[-1,1],
所以-sin α∈[-1,1],
所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.
答案:
14.已知,,且,若恒成立,则实数的取值范围是____.
【答案】(-4,2)
【解析】
试题分析:因为当且仅当时取等号,所以
考点:基本不等式求最值
15.已知函数的最大值为3,的图象与y轴的交点坐标为,其相邻两条对称轴间的距离为2,则
【答案】
【解析】
,由题意,得,
解得,则的周期为4,且,所以
.
考点:三角函数的图像与性质.
三.解答题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.
16.已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。
(Ⅰ)求证:AE平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).
【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)1:5
【解析】
【分析】
(Ⅰ)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD;
(Ⅱ)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;
(Ⅲ)利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可.
【详解】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,
又在△ABD中,AE⊥BD于E,AE⊂平面ABD,
∴AE⊥平面BCD.
(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,
由题意知EF⊥BD,又AE⊥BD,
如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,
建立空间直角坐标系E-xyz,
设AB=BD=DC=AD=2,
则BE=ED=1,∴AE=,BC=2,BF=,
则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),
,,
由AE⊥平面BCD知平面BCD的一个法向量为,
设平面ADC的一个法向量,
则,取x=1,得,
∴,
∴二面角A-DC-B的平面角为锐角,故余弦值为.
(Ⅲ)三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.
【点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.
17.已知函数(,)满足下列3个条件中的2个条件:
①函数的周期为;
②是函数的对称轴;
③且在区间上单调.
(Ⅰ)请指出这二个条件,并求出函数的解析式;
(Ⅱ)若,求函数的值域.
【答案】(Ⅰ)只有①②成立,;(Ⅱ).
【解析】
【分析】
(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.
(Ⅱ)得到,得到函数值域.
【详解】(Ⅰ)由①可得,;由②得:,;
由③得,,,;
若①②成立,则,,,
若①③成立,则,,不合题意,
若②③成立,则,,
与③中的矛盾,所以②③不成立,
所以只有①②成立,.
(Ⅱ)由题意得,,
所以函数的值域为.
【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.
18.某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:
日期
1 日
2 日
3 日
4 日
5 日
6 日
7 日
8 日
9 日
10 日
元件A个数
9
15
12
18
12
18
9
9
24
12
日期
11 日
12 日
13 日
14 日
15 日
16 日
17 日
18 日
19 日
20 日
元件A个数
12
24
15
15
15
12
15
15
15
24
从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.
(Ⅰ)求X的分布列与数学期望;
(Ⅱ)若a,b,且b-a=6,求最大值;
(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)
【答案】(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.
【解析】
【分析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X
的分布列,然后求解期望即可.
(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.
(Ⅲ)利用前两问的结果,判断至少增加2人.
【详解】(Ⅰ)X的取值为:9,12,15,18,24;
,,,
,,
X的分布列为:
X
9
12
15
18
24
P
故X的数学期望;
(Ⅱ)当P(a≤X≤b)取到最大值时,
a,b的值可能为:,或,或.
经计算,,,
所以P(a≤X≤b)的最大值为.
(Ⅲ)至少增加2人.
【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.
19.已知点到抛物线C:y2=2px准线的距离为2.
(Ⅰ)求C的方程及焦点F的坐标;
(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.
【答案】(Ⅰ)C的方程为,焦点F的坐标为(1,0);(Ⅱ)2
【解析】
【分析】
(Ⅰ)根据抛物线定义求出p,即可求C的方程及焦点F的坐标;
(Ⅱ)设点A(x1,y1),B(x2,y2),由已知得Q(−1,−2),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)−2(k≠0),与抛物线联立可得ky2-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|•|NF|的值.
【详解】
(Ⅰ)由已知得,所以p=2.
所以抛物线C的方程为,焦点F的坐标为(1,0);
(II)设点A(x1,y1),B(x2,y2),由已知得Q(−1,−2),
由题意直线AB斜率存在且不为0.
设直线AB的方程为y=k(x+1)−2(k≠0).
由得,
则,.
因为点A,B在抛物线C上,所以
,.
因为PF⊥x轴,
所以
,
所以|MF|⋅|NF|的值为2.
【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.
20.设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
【答案】(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ)详见解析;(Ⅲ).
【解析】
试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对求导,再对a进行讨论,判断函数的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论,第(Ⅲ)问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.
试题解析:(Ⅰ)
<0,在内单调递减.
由=0有.
当时,<0,单调递减;
当时,>0,单调递增.
(Ⅱ)令=,则=.
当时,>0,所以,从而=>0.
(Ⅲ)由(Ⅱ),当时,>0
当,时,=.
故当>在区间内恒成立时,必有.
当时,>1.
由(Ⅰ)有,而,
所以此时>在区间内不恒成立.
当时,令=().
当时,=.
因此,在区间单调递增.
又因为=0,所以当时,=>0,即>恒成立.
综上,.
【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题
【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.
21.如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,…,n)
表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积.令
a11
a12
…
a1n
a21
a22
a2n
…
…
…
…
an1
an2
…
ann
(Ⅰ)请写出一个AS(4,4),使得l(A)=0;
(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;
(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.
【答案】(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)
【解析】
【分析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;
(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;
(Ⅲ)通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2……,以此类推可得到Ak.
【详解】(Ⅰ)答案不唯一,如图所示数表符合要求.
(Ⅱ)不存在AS(9,9),使得l(A)=0,证明如下:
假如存在,使得.
因为,,
所以,,...,,,,...,这18个数中有9个1,9个-1.
令.
一方面,由于这18个数中有9个1,9个-1,从而①,
另一方面,表示数表中所有元素之积(记这81个实数之积为m);
也表示m,从而②,
①,②相矛盾,从而不存在,使得.
(Ⅲ)记这个实数之积为p.
一方面,从“行”的角度看,有;
另一方面,从“列”的角度看,有;
从而有③,
注意到,,
下面考虑,,...,,,,...,中-1的个数,
由③知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,
所以,
对数表,显然.
将数表中的由1变为-1,得到数表,显然,
将数表中的由1变为-1,得到数表,显然,
依此类推,将数表中的由1变为-1,得到数表,
即数表满足:,其余,
所以,,
所以,
由k的任意性知,l(A)的取值集合为.
【点睛】本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.