• 460.00 KB
  • 2021-06-11 发布

2020届二轮复习两角差的余弦公式课件(10张)(全国通用)

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
3.1.1.两角差的余弦公式 吴川市第一中学 李 君 在平面直角坐标系xOy内,作单位圆,并作 α 、 β 和–β角,使α角的始边为Ox,交圆O于P1, 终边交圆O于P2;β角的始边为OP2,终边交圆O于 P3; – β角的始边为OP1,终边交圆O于P4; 此时,P1.P2.P3.P4的坐标分别为P1(1,0) , P2(cosα,sinα), P3(cos(α+β),sin(α+β) ), P4(cos(–β), sin(–β)). 由︱P1P3 ︱= ︱P2P4︱及两点间距离公式, 得: [cos(α+β)–1]²+sin²(α+β)=[cos(–β)–cosα]²+[sin(–β)–sinα] ². 整理得: cos(α+β)=cosαcosβ–sinαsinβ. 证明:如图所示 cos(α+β)=cosαcosβ–sinαsinβ cos(α+β)=cosαcosβ–sinαsinβ 公式的结构特征: 左边是复角α+β 的余弦,右边是单角α、β 的余弦积与正弦积的差. 将 替换为 cos(α–β)=cosαcosβ+sinαsinβ 简记: cos(α–β)=cosαcosβ+sinαsinβ 公式的结构特征: 左边是复角α+β的余弦,右边是单角α、β 的余弦积与 正弦积的和. 简记: 两角和与差的余弦公式: 例1.不查表,求cos(–435°)的值. 解:cos(– 435 °)=cos75 ° =cos(45 ° +30 °) =cos45 ° ·cos30 ° –sin45 ° ·sin30 ° 应用举例 不查表,求cos105 °和cos15 °的值. cos15 °= 答案:cos105°= 练习 例3.已知cos(α–30 °)=15/17, α为大于30 °的锐角,求cos α的值. 分析: α=(α– 30 °)+ 30 ° 解:∵ 30 °< α <90 ° , ∴ 0 ° < α – 30 ° <60 °, 由cos(α – 30 ° )=15/17,得sin (α – 30 ° )=8/17, ∴cos α=cos[(α – 30 ° )+ 30 °] = cos(α – 30 ° )cos 30 ° – sin (α – 30 ° )sin 30 ° = 15/17 × √3/2 – 8/17 × 1/2 =(15 √3 – 8)/34. 例4.在△ABC中,cosA=3/5,cosB=5/13, 则cosC的值为( ). 分析: ∵C=180 °–(A+B) ∴cosC=–cos(A+B)= – cosAcosB+sinAsinB 已知cosA=3/5 ,cosB=5/13,尚需求 sinA,sinB的值. ∵sinA= 4/5 , sinB=12/13, ∴cosC=–3/5 × 5/13 + 4/5 × 12/ 13=33/65. 33/65 例5.cos25 °cos35 °– cos65 °cos55 ° 的值等于( ). (A) 0 (B) 1/2 (C) √3/2 (D)–1/2 解: 原式=cos25 °cos35 °–sin25 ° sin35 ° =cos(25 ° +35 °) =cos60 ° =1/2. 故选: ( )B