• 26.50 KB
  • 2021-06-11 发布

【数学】2020届一轮复习人教B版14-2 直接证明与间接证明学案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎14.2 直接证明与间接证明 典例精析 题型一 运用综合法证明 ‎ ‎【例1】设a>0,b>0,a+b=1,求证:++≥8.‎ ‎【证明】因为a+b=1,‎ 所以++=++=1++1++≥2++=2+2+4=8,当且仅当a=b=时等号成立.‎ ‎【点拨】在用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从已知逐渐引出结论.‎ ‎【变式训练1】设a,b,c>0,求证:++≥a+b+c.‎ ‎【证明】因为a,b,c>0,根据基本不等式,‎ 有+b≥‎2a,+c≥2b,+a≥‎2c.‎ 三式相加:+++a+b+c≥2(a+b+c).‎ 即++≥a+b+c.‎ 题型二 运用分析法证明 ‎【例2】设a、b、c为任意三角形三边长,I=a+b+c,S=ab+bc+ca.求证:I2<4S.‎ ‎【证明】由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)=a2+b2+c2+2S,‎ 故要证I2<4S,只需证a2+b2+c2+2S<4S,即a2+b2+c2<2S.‎ 欲证上式,只需证a2+b2+c2-2ab-2bc-2ca<0,‎ 即证(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0,‎ 只需证三括号中的式子均为负值即可,‎ 即证a2<ab+ac,b2<bc+ba,c2<ca+cb,‎ 即a<b+c,b<a+c,c<a+b,‎ 显然成立,因为三角形任意一边小于其他两边之和.‎ 故I2<4S.‎ ‎【点拨】(1)应用分析法易于找到思路的起始点,可探求解题途径.‎ ‎(2)应用分析法证明问题时要注意:严格按分析法的语言表达;下一步是上一步的充分条件.‎ ‎【变式训练2】已知a>0,求证:-≥a+-2.‎ ‎【证明】要证-≥a+-2,‎ 只要证+2≥a++.‎ 因为a>0,故只要证(+2)2≥(a++)2,‎ 即a2++4+4≥a2+2++2(a+)+2,‎ 从而只要证2≥(a+),‎ 只要证4(a2+)≥2(a2+2+),即a2+≥2,‎ 而该不等式显然成立,故原不等式成立.‎ 题型三 运用反证法证明 ‎【例3】 若x,y都是正实数,且x+y>2.求证:<2或<2中至少有一个成立.‎ ‎【证明】假设<2和<2都不成立.则≥2,≥2同时成立.‎ 因为x>0且y>0,所以1+x≥2y且1+y≥2x,‎ 两式相加得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾.‎ 因此<2与<2中至少有一个成立.‎ ‎【点拨】一般以下题型用反证法:①当“结论”的反面比“结论”本身更简单、更具体、更明确;②否定命题,唯一性命题,存在性命题,“至多”“至少”型命题;③有的肯定形式命题,由于已知或结论涉及到无限个元素,用直接证明形式比较困难因而往往采用反证法.‎ ‎【变式训练3】已知下列三个方程:x2+4ax-‎4a+3=0;x2+(a-1)x+a2=0;x2+2ax-‎2a=0,若至少有一个方程有实根,求实数a的取值范围.‎ ‎【解析】假设三个方程均无实根,则有 由(‎4a)2-4(-‎4a+3)<0,得‎4a2+‎4a-3<0,即-<a<;‎ 由(a-1)2-‎4a2<0,得(a+1)(‎3a-1)>0,即a<-1或a>;‎ 由(‎2a)2-4(-‎2a)<0,得a(a+2)<0,即-2<a<0.‎ 以上三部分取交集得M={a|-<a<-1},则三个方程至少有一个方程有实根的实数a的取值范围为∁RM,即{a|a≤-或a≥-1}.‎ 总结提高 分析法与综合法各有其优缺点:分析法是执果索因,比较容易寻求解题思路,但叙述繁琐;综合法叙述简洁,但常常思路阻塞.因此在实际解题时,需将两者结合起来运用,先用分析法寻求解题思路,再用综合法简洁地叙述解题过程.从逻辑思维的角度看,原命题“p⇒q”与逆否命题“q⇒p”是等价的,而反证法是相当于由“q”推出“p”成立,从而证明了原命题正确.因此在运用反证法的证明过程中要特别注意条件“‎ q”的推理作用.综合法与分析法在新课标中第一次成为独立的显性的课题,预测可能有显性的相关考试命题.反证法证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾或与定义、公理、公式事实矛盾等. ‎

相关文档