• 392.00 KB
  • 2021-06-11 发布

2021届浙江新高考数学一轮复习高效演练分层突破:第八章 5 第5讲 直线、平面垂直的判定及其性质

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎[基础题组练]‎ ‎1.在正方体ABCDA1B1C1D1中,点E为棱CD的中点,则(  )‎ A.A1E⊥DC1        B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 解析:选C.由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.‎ ‎2.如图,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是(  )‎ A.A1D B.AA1‎ C.A1D1 D.A1C1‎ 解析:选D.由题易知A1C1⊥平面BB1D1D.又B1O⊂平面BB1D1D,所以A1C1⊥B1O.‎ ‎3.(2020·温州中学高三模考)如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是(  )‎ A.平面ABC⊥平面ABD B.平面ABD⊥平面BCD C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE 解析:选C.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.‎ ‎4.(2020·浙江省名校协作体高三联考)已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则直线AB1与侧面ACC1A1所成角的正弦值等于(  )‎ A. B. C. D. 解析:选A.如图所示,取A1C1的中点D,连接AD,B1D,则可知B1D⊥平面ACC1A1,所以∠DAB1即为直线AB1与平面ACC1A1所成的角,不妨设正三棱柱的棱长为2,所以在Rt△AB1D中,‎ sin∠DAB1===,故选A.‎ ‎5.(2020·浙江省高中学科基础测试)在四棱锥PABCD中,底面ABCD是直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点,设=m,则“0β.故选B.‎ ‎7.如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.‎ 解析:作CH⊥AB于H,连接PH.因为PC⊥平面ABC,所以PH⊥AB,PH为PM的最小值,等于2.‎ 答案:2 ‎8.如图所示,在四面体ABCD中,AB,BC,CD两两垂直,且BC=CD=1.直线BD与平面ACD所成的角为30°,则线段AB的长度为________.‎ 解析:如图,过点B作BH⊥AC,垂足为点H,连接DH.‎ 因为CD⊥AB,CD⊥BC,所以平面ACD⊥平面ABC,所以BH⊥平面ACD.‎ 所以∠BDH为直线BD与平面ACD所成的角.‎ 所以∠BDH=30°,‎ 在Rt△BDH中,BD=,‎ 所以BH=.‎ 又因为在Rt△BHC中,BC=1,‎ 所以∠BCH=45°.‎ 所以在Rt△ABC中,AB=BC=1.‎ 答案:1‎ ‎9.(2020·台州市书生中学月考)如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,PD=AD=DC=2AB,则异面直线PC与AB所成角的大小为________;直线PB与平面PDC所成角的正弦值为________.‎ 解析:因为AB∥CD,所以∠PCD即为异面直线PC与AB所成的角,显然三角形PDC为等腰直角三角形,所以∠PCD=.设AB=1,则可计算得,PB=3,而点B到平面PDC的距离d等于AD的长为2,所以直线PB与平面PDC所成角的正弦值为=.‎ 答案:  ‎10.(2020·浙江名校新高考联盟联考)如图,已知正四面体DABC,P为线段AB上的动点(端点除外),则二面角DPCB的平面角的余弦值的取值范围是________.‎ 解析:当点P从A运动到B,二面角DPCB的平面角逐渐增大,二面角DPCB的平面角最小趋近于二面角DACB的平面角,最大趋近于二面角DBCA的平面角的补角,故余弦值的取值范围是.‎ 答案: ‎11.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点.‎ ‎(1)求证:平面PAC⊥平面PBC;‎ ‎(2)若PA=AC,D为PC的中点.求证:PB⊥AD.‎ 证明:(1)设⊙O所在的平面为α,‎ 由已知条件PA⊥α,BC在α内,所以PA⊥BC.‎ 因为点C是圆周上不同于A,B的任意一点,‎ AB是⊙O的直径,‎ 所以∠BCA是直角,即BC⊥AC.‎ 又因为PA与AC是△PAC所在平面内的两条相交直线,所以BC⊥平面PAC.‎ 又因为BC在平面PBC内,‎ 所以平面PAC⊥平面PBC.‎ ‎(2)因为PA=AC,D是PC的中点,所以AD⊥PC.‎ 由(1)知平面PAC⊥平面PBC,且平面PAC∩平面PBC=PC.‎ 因为AD⊂平面PAC.所以AD⊥平面PBC.‎ 又PB⊂平面PBC,所以PB⊥AD.‎ ‎12.(2020·浙江名校协作体高三质检)如图,在四棱锥PABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.‎ ‎(1)求证:PD∥平面OCM;‎ ‎(2)若AP与平面PBD所成的角为60°,求线段PB的长.‎ 解:(1)证明:设BD交OC于点N,连接MN,OB,‎ 因为O为AD的中点,AD=2,所以OA=OD=1=BC.‎ 又因为AD∥BC,所以四边形OBCD为平行四边形,所以N为BD的中点,因为M为PB的中点,所以MN∥PD.‎ 又因为MN⊂平面OCM,PD⊄平面OCM,所以PD∥平面OCM.‎ ‎(2)由四边形OBCD为平行四边形,知OB=CD=1,‎ 所以△AOB为等边三角形,所以∠A=60°,‎ 所以BD==,即AB2+BD2=AD2,即AB⊥BD.‎ 因为DP⊥平面ABP,所以AB⊥PD.‎ 又因为BD∩PD=D,所以AB⊥平面BDP,‎ 所以∠APB为AP与平面PBD所成的角,即∠APB=60°,‎ 所以PB=.‎ ‎[综合题组练]‎ ‎1.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出下列四个结论:①DF⊥BC;②BD⊥FC;③平面BDF⊥平面BCF;④平面DCF⊥平面BCF,则上述结论可能正确的是(  )‎ A.①③ B.②③‎ C.②④ D.③④‎ 解析:选B.对于①,因为BC∥AD,AD与DF相交但不垂直,所以BC与DF不垂直,则①不成立;对于②,设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,所以②正确;对于③,当点D在平面BCF上的射影P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④,因为点D在平面BCF上的射影不可能在FC上,所以④不成立.‎ ‎2.(2020·绍兴诸暨高考模拟)已知三棱锥ABCD的所有棱长都相等,若AB与平面α所成角等于,则平面ACD与平面α所成角的正弦值的取值范围是(  )‎ A. B. C. D. 解析:选A.因为三棱锥ABCD的所有棱长都相等,‎ 所以三棱锥ABCD为正四面体,如图:‎ 设正四面体的棱长为2,取CD中点P,连接AP,BP,‎ 则∠BAP为AB与平面ADC所成角.‎ AP=BP=,可得cos∠BAP=,sin∠BAP=.‎ 设∠BAP=θ.‎ 当CD与α平行且AB在平面ACD上面时,平面ACD与平面α所成角的正弦值最小,为sin=sincos θ-cossin θ=×-×=;‎ 当CD与α平行且AB在平面ACD下面时,平面ACD与平面α所成角的正弦值最大,‎ 为sin=sincos θ+cossin θ=×+×=,‎ 所以平面ACD与平面α所成角的正弦值的取值范围是.故选A.‎ ‎3.(2020·杭州市高三期末)在△ABC中,∠ABC=,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为,则sin θ=________.‎ 解析:过A作AO⊥α,垂足是O,过O作OD⊥BC,交BC于点D,连接AD,则AD⊥BC,所以∠ADO是平面ABC与平面α所成的二面角,即∠ADO=,∠ABO是直线AB与平面α所成的角,即∠ABO=θ,设AO=,‎ 所以AD=2,在Rt△ADB中,‎ ‎∠ABD=,所以AB==,‎ 所以sin θ===.‎ 答案: ‎4.(2020·浙江“七彩阳光”新高考联盟联考)已知直角三角形ABC的两条直角边AC=2,BC=3,P为斜边AB上一点,沿CP将此三角形折成直二面角ACPB,此时二面角PACB的正切值为,则翻折后AB的长为________.‎ 解析:如图,在平面PCB内过P点作直二面角ACPB的棱CP的垂线交边BC于点E, 则EP⊥平面ACP.‎ 于是在平面PAC中过P作二面角PACB的棱AC的垂线,垂足为D,连接DE,则∠PDE为二面角PACB的平面角,且tan∠PDE==,设DP=a,则EP=a.‎ 如图,设∠BCP=α,则∠ACP=90°-α,则在直角三角形DPC中,PC==,又在直角三角形PCE中,tan α=,则·tan α=a,sin α=cos2α,所以α=45°,因为二面角ACPB为直二面角,所以cos∠ACB=cos∠ACP·cos∠BCP,于是=cos∠ACP·sin∠ACP=,解得AB=.‎ 答案: ‎5.(2020·浙江名校模拟)如图,在四棱锥EABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.‎ ‎(1)证明:AB⊥平面BCE;‎ ‎(2)求直线AE与平面CDE所成角的正弦值.‎ 解:(1)证明:因为∠DAB=∠ABC=90°,‎ 所以四边形ABCD是直角梯形,‎ 因为AB=BC=1,AD=ED=3,EC=2.‎ 所以CD==,‎ 所以CE2+DC2=DE2,所以EC⊥CD,‎ 因为平面EDC⊥平面ABCD,平面EDC∩平面ABCD=DC,‎ 所以CE⊥平面ABCD,‎ 所以CE⊥AB,又AB⊥BC,BC∩CE=C,‎ 所以AB⊥平面BCE.‎ ‎(2)过A作AH⊥DC,交DC于点H,‎ 则AH⊥平面DCE,连接EH,‎ 则∠AEH是直线AE与平面DCE所成的角,‎ 因为×DC×AH=×AB-×AB×BC,‎ 所以AH==,‎ AE= =,‎ 所以sin∠AEH=,‎ 所以直线AE与平面CDE所成角的正弦值为.‎ ‎6.(2020·鲁迅中学高考方向性测试)四棱锥PABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,PC与平面PAB所成的角的正弦值为.‎ ‎(1)在棱PD上求一点F,使AF∥平面PEC;‎ ‎(2)求二面角DPEA的余弦值.‎ 解:(1)分别取PD,PC的中点F,G,连接AF,FG,GE,‎ 则FG∥CD∥AB,FG=‎ CD=AB=AE,‎ 所以四边形AEGF为平行四边形,‎ 所以AF∥EG,又EG⊂平面PEC,‎ 所以AF∥平面PEC,‎ 所以PD的中点F即为所求.‎ ‎(2)易知,∠CPE即为PC与平面PAB所成的角,‎ 在Rt△PEC中,=,即=,‎ 解得PA=2,‎ 过D作BA的垂线,垂足为H,过H作PE的垂线,垂足为K,连接KD,‎ 因为PA⊥平面ABCD,所以PA⊥DH,又DH⊥BA,所以DH⊥平面PBA,‎ 所以DH⊥PE,所以PE⊥平面DHK,所以PE⊥DK,‎ 所以∠DKH即为所求的二面角的平面角,‎ 在Rt△DHK中,DH=,‎ 由于PE·HK=EH·PA,所以HK==,‎ 从而DK==,‎ 所以cos∠DKH==,‎ 即二面角DPEA的余弦值为.‎

相关文档