- 633.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
- 1 -
核心素养测评六十五 古典概型
(25 分钟 60 分)
一、选择题(每小题 5 分,共 25 分)
1.从 1,2,3,4,5 这 5 个数中任取 3 个不同的数,则取出的 3 个数可作为三角形的三边边长的概
率是 ( )
A. B. C. D.
【解析】选 A.从 1,2,3,4,5 这 5 个数中任取 3 个不同的数的基本事件有
(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),
(2,4,5),(3,4,5),共 10 个,取出的 3 个数可作为三角形的三边边长的基本事件有
(2,3,4),(2,4,5),(3,4,5),共 3 个,故所求概率 P= .
2.已知 a∈{-2,0,1,2,3},b∈{3,5},则函数 f(x)=(a2-2)ex+b 为减函数的概率
是 ( )
A. B. C. D.
【解析】选 C.函数 f(x)=(a2-2)ex+b 为减函数,则
a2-2<0,又a∈{-2,0,1,2,3},故只有 a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b
为减函数的概率 P= = .
3.在集合 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量
α= ,从这些向量中任取两个向量为邻边作平行四边形,从所作平行四边形中随机抽取
一个,则它的面积不超过 2 的概率为 ( )
A. B. C. D.
【解析】选 D.由已知可得向量 , , , ,这 4 个向量组成的平行
四边形的面积为 4,2,2,10,6,8,所以这个平行四边形的面积不超过 2 的概率为 = .
- 2 -
4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于
齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机
选一匹进行一场比赛,则田忌的马获胜的概率
为 ( )
A. B. C. D.
【解析】选 A.将齐王的三匹马分别记为 a1,a2,a3,田忌的三匹马分别记为 b1,b2,b3,齐王与田忌
赛马,其情况有:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3)共 9
种,其中田忌的马获胜的有(a2,b1),(a3,b1),(a3,b2)共 3 种,所以田忌获胜的概率为 = .
5.从 0,1,2,3,4,5,6,7,8,9 中任取七个不同的数,则这七个数的中位数是 6 的概率为
( )
A. B. C. D.
【解析】选 D.由古典概型的概率公式,得
P= = = .
二、填空题(每小题 5 分,共 15 分)
6.记 a,b 分别是投掷两次骰子所得的数字,则方程 x2-ax+2b=0 有两个不同实根的概率为
________.
【解析】由题意知投掷两次骰子所得的数字分别为 a,b,则基本事件有
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有
36 个.而方程 x2-ax+2b=0 有两个不同实根的条件是 a2-8b>0,满足此条件的基本事件
有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有 9 个,故所求概率为
= .
答案:
- 3 -
7.记一个两位数的个位数字与十位数字的和为 A.若 A 是不超过 5 的奇数,从这些两位数中任取
一个,其个位数为 1 的概率为________.
【解析】根据题意,个位数字与十位数字之和为奇数且不超过 5 的两位数
有:10,12,14,21,23,30,32,41,50,共 9 个,其中个位是 1 的有 21,41,共 2 个,因此所求的概率
为 .
答案:
8.在某项大型活动中,甲、乙等五名志愿者被随机地分到 A,B,C,D 四个不同的岗位服务,每个
岗位至少有一名志愿者.
则甲、乙两人同时在 A 岗位服务的概率是________;
甲、乙两人不在同一个岗位服务的概率是________.
【解析】记“甲、乙两人同时在 A 岗位服务”为事件 EA,
那么 P(EA)= = ,
即甲、乙两人同时在 A 岗位服务的概率是 .
记“甲、乙两人同时在同一个岗位服务”为事件 E,
那么 P(E)= = ,
所以甲、乙两人不在同一个岗位服务的概率是 P( )=1-P(E)= .
答案:
三、解答题(每小题 10 分,共 20 分)
9.一个盒子里装有标号为 1,2,3,4,5 的 5 张标签,随机地选取两张标签,根据下列条件求两张
标签上的数字为相邻整数的概率:
(1)标签的选取是无放回地.
- 4 -
(2)标签的选取是有放回地.
【解析】(1)从 5 张标签中无放回地选取两张标签,
其结果共有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},10 种不同
结果,
其中数字为相邻整数的有{1,2},{2,3},{3,4},{4,5},4 种结果,
故其概率为 P= = .
(2)标签的选取是有放回的,其结果共有 5×5=25 种,
其数字为相邻整数的有{1,2},{2,1},{2,3},{3,2},{3,4},{4,3},{4,5},{5,4},8 种结果,
故其概率为:P= .
10.某市 A,B 两所中学的学生组队参加辩论赛,A 中学推荐了 3 名男生、2 名女生,B 中学推荐了
3 名男生、4 名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训
的男生中随机抽取 3 人、女生中随机抽取 3 人组成代表队.
(1)求 A 中学至少有 1 名学生入选代表队的概率;
(2)某场比赛前,从代表队的 6 名队员中随机抽取 4 人参赛,求参赛女生人数不少于 2 人的概率.
【解析】(1)由题意,参加集训的男生、女生各有 6 名.
参赛学生全从 B 中学抽取(等价于 A 中学没有学生入选代表队)的概率为 = ,
因此,A 中学至少有 1 名学生入选代表队的概率为 1- = .
(2)设“参赛的 4 人中女生不少于 2 人”为事件 A,“参赛女生有 2 人”为事件 B,“参赛女生
有 3 人”为事件 C.
则 P(B)= = ,P(C)= = .
由互斥事件的概率加法公式,得
P(A)=P(B)+P(C)= + = ,
- 5 -
故参赛女生人数不少于 2 人的概率为 .
(15 分钟 35 分)
1.(5 分)如图所示方格,在每一个方格中填入一个数字,数字可以是 1,2,3,4 中的任何一个,允
许重复.则填入 A 方格的数字大于 B 方格的数字的概率为( )
A
B
A. B. C. D.
【解析】选 D.只考虑 A,B 两个方格的排法.不考虑大小,A,B 两个方格有 4×4=16(种)排法.要
使填入 A 方格的数字大于 B 方格的数字,则从 1,2,3,4 中选 2 个数字,大的放入 A 格,小的放入
B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共 6 种,故填入 A 方格的数字大于 B 方格的数
字的概率为 = .
2.(5 分)有两张卡片,一张的正反面分别写着数字 0 与 1,另一张的正反面分别写着数字 2 与 3,
将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 ( )
A. B. C. D.
【解析】选 C.将两张卡片排在一起组成两位数,则所组成的两位数有 12,13,20,21,30,31,共 6
个,两位数为奇数的有 13,21,31,共 3 个,故所组成的两位数为奇数的概率为 = .
3.(5 分)在一项来自“一带一路”沿线 20 国青年参与的评选中,“高铁”“支付宝”“共享单
车”和“网购”被称作中国“新四大发明”,曾以古代“四大发明”推动世界进步的中国,正
再次以科技创新向世界展示自己的发展理念.某班假期分为四个社会实践活动小组,分别对
“新四大发明”对人们生活的影响进行调查,于开学进行交流报告,四个小组随机排序,则“支
付宝”小组和“网购”小组不相邻的概率为 ( )
A. B. C. D.
- 6 -
【解析】选 D.记“支付宝”小组和“网购”小组相邻的事件为 A,则 P( )=1-P(A)=1- = .
4.(10 分)设连续掷两次骰子得到的点数分别为 m,n,令平面向量 a=(m,n),b=(1,-3).
(1)求事件“a⊥b”发生的概率.
(2)求事件“|a|≤|b|”发生的概率.
【解析】(1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共 36
种.因为 a⊥b,所以 m-3n=0,即 m=3n,有(3,1),(6,2),共 2 种,
所以事件 a⊥b 发生的概率为 = .
(2)由|a|≤|b|,得 m2+n2≤10,
有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共 6 种,其概率为 = .
5.(10 分)某校社团活动开展得有声有色,极大地推动了学生的全面发展,深受学生欢迎,每届
高一新生都踊跃报名加入.现已知高一某班 60 名同学中有 4 名男同学和 2 名女同学参加心理
社,现从这 6 名同学中随机选取 2 名同学代表社团参加校际交流(每名同学被选到的可能性相
同).
(1)在该班随机选取 1 名同学,求该同学参加心理社团的概率.
(2)求从这 6 名同学中选出的 2 名同学代表至少有 1 名女同学的概率.
【解析】(1)依题意,该班 60 名同学中共有 6 名同学参加心理社,
所以在该班随机选取 1 名同学,该同学参加心理社的概率为 = .
(2)设 A,B,C,D 表示参加心理社的男同学,a,b 表示参加心理社的女同学,
则从 6 名同学中选出的 2 名同学代表共有 15 种等可能的结果:
AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,Ca,Cb,Da,Db,ab,
其中至少有 1 名女同学的结果有 9 种:Aa,Ab,Ba,Bb,Ca,Cb,Da,Db,ab,
根据古典概型计算公式,从 6 名同学中选出的 2 名同学代表至少有 1 名女同学的概率为
P= = .
- 7 -