• 831.50 KB
  • 2021-06-11 发布

2017-2018学年河北省邯郸市高二下学期期末考试数学理试题(Word版)

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017-2018学年河北省邯郸市高二下学期期末考试数学理试题 一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.已知集合,,则中元素的个数为( )‎ A.3 B.2 C.1 D.0‎ ‎2.设复数,在复平面内的对应点关于虚轴对称,,则( )‎ A. B.5 C.-5 D.‎ ‎3.“”是“”的( )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D. 既不充分也不必要条件 ‎4.正数、、满足,则( )‎ A. B. C. D.‎ ‎5.命题“,且的否定形式是( )‎ A.,且 B.,或 ‎ C.,且 D.,且 ‎6.设的内角,,所对的边分别为,,,若,则的形状为( )‎ A.锐角三角形 B.直角三角形 C.等边三角形 D.等腰三角形 ‎7.已知函数(,)的图象如图所示,则的解析式为( )‎ A. ‎ B. ‎ C. ‎ D.‎ ‎8.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论中正确的是( )‎ A.是偶函数 B.是奇函数 ‎ C.是奇函数 D.是奇函数 ‎9.设函数,( )‎ A.3 B.6 C.9 D.12‎ ‎10.已知函数,是奇函数,则( )‎ A.在上单调递减 B.在上单调递减 ‎ C. 在上单调递增 D.在上单调递增 ‎11.函数的图象可能是( )‎ A. B. C. D.‎ ‎12.直线分别与曲线,交于,,则的最小值为( )‎ A.3 B.2 C. D.‎ 二、填空题:本大题共4小题,每小题5分.‎ ‎13.已知向量,,若,则 .‎ ‎14.不等式的解集是 .‎ ‎15.已知,,则 .‎ ‎16.三角形中,是边上一点,,,且三角形与三角形面积之比为,则 .‎ 三、解答题 :解答应写出文字说明、证明过程或演算步骤. ‎ ‎17. 在中,,,的对边分别为,,,若,‎ ‎(1)求的大小;(2)若,,求,的值.‎ ‎18. 已知向量,,,设函数 ‎(1)求的最小正周期;‎ ‎(2)求函数的单调递减区间;‎ ‎(3)求在上的最大值和最小值.‎ ‎19. 据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.‎ ‎(1)求的值;‎ ‎(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?‎ ‎(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.‎ ‎20. 如图,某军舰艇位于岛的的正西方处,且与岛的相距12海里.经过侦察发现,国际海盗船以10海里/小时的速度从岛屿出发沿北偏东30°方向逃窜,同时,该军舰艇从处出发沿北偏东的方向匀速追赶国际海盗船,恰好用2小时追上.‎ ‎(1)求该军舰艇的速度.‎ ‎(2)求的值.‎ ‎21.已知函数,.‎ ‎(1)当 时,求函数图象在点处的切线方程;‎ ‎(2)当时,讨论函数的单调性;‎ ‎(3)是否存在实数,对任意,且有恒成立?若存在,求出的取值范围;若不存在,说明理由.‎ ‎22.设,函数.‎ ‎(1)若,极大值;‎ ‎(2)若无零点,求实数的取值范围;‎ ‎(3)若有两个相异零点,,求证:‎ 试卷答案 一、选择题 ‎1-5: BCBCD 6-10: BDCCB 11、12:AD 二、填空题 ‎13. 14. 15. 16. 15/8‎ 三、解答题 ‎17. (1)(2),或,‎ 解:(1)由已知得 ‎∴‎ ‎∵‎ ‎∴‎ ‎∵‎ ‎∴,‎ ‎(2)∵‎ 即 ‎∴‎ ‎∴‎ ‎∵‎ ‎∴,或,‎ ‎18. ‎ ‎19. (1)根据频率分布直方图可知,‎ ‎.‎ (2) 产值小于500万元的企业个数为:,‎ 所以抽到产值小于500万元的企业不超过两个的概率为.‎ ‎(3)的所有可能取值为,,.‎ ‎,‎ ‎,‎ ‎.‎ ‎∴的分布列为:‎ 期望为:.‎ ‎20. (1):(1)依题意知,∠CAB=120°,AB=10×2=20,AC=12,∠ACB=α,在△ABC 中, 由余弦定理,得 BC2=AB2+AC2-2AB·ACcos∠CAB ‎=202+122-2×20×12cos 120°‎ ‎=78 4,解得BC=28‎ 所以该军舰艇的速度为=‎14海里/小时.‎ ‎(2)在△ABC中,由正弦定理,得=,即 sin α===.‎ ‎21. (1)当时,,,所以所求的切线方程为,即.‎ ‎(2)①当,即时,,在上单调递增.‎ ‎②当,即时,因为或时,;当时,, 在,上单调递增,在上单调递减;‎ ‎③当,即时,因为或时,;当时,,在,上单调递增,在上单调递减.‎ ‎(3)假设存在这样的实数,满足条件,不妨设,由知,令,则函数在上单调递增.所以,即在上恒成立,所以,故存在这样的实,满足题意,其取值范围为.‎ ‎22. (1)‎ ‎(2)①若时,则,是区间上的增函数,‎ ‎∵,,‎ ‎∴,函数在区间有唯一零点;‎ ‎②若,有唯一零点;‎ ‎③若,令,得,‎ 在区间上,,函数是增函数;‎ 在区间上,,函数是减函数;‎ 故在区间上,的极大值为,‎ 由于无零点,须使,解得,‎ 故所求实数的取值范围是.‎

相关文档