- 953.11 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
郴州市 2021 届高三上学期第二次质检
数学
(试题卷)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条
形码上的姓名、准考证号和科目。
2.学生作答时,选择题和非选择题均须作在答题卡上,在本试题卷上作答无效。考生在答题卡
上按答题卡中注意事项的要求答题。
3.考试结束后,将本试题卷和答题卡一并交回。
4.本试题卷共 5 页。如缺页,考生须声明,否则后果自负。
绝密★启用前
郴州市 2021 届高三第二次教学质量监测试卷
数学
一、单选题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要
求的。
1.设集合 2| 2 3 0A x x x , { | 2 3}B x x ,则 A B ( )
A. 1,3 B. 1,3 C. 1,2 D. 2,3
2.若复数 Z 满足 (1 ) 2Z i i ,则下列说法正确的是( )
A. Z 的虚部为 i B. Z 的共轭复数为 1Z i
C. Z 对应的点在第二象限 D. 2Z
3.已知 a,b 是两条不同的直线,α,β是两个不同的平面,且 a ,b ,则“ //a b ”是“ // ”的
( )
A 充分不必要条件 B 必要不充分条件
C 充要条件 D 既不充分也不必要条件
4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深
奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图 1 所示,一与六共
宗居下,二与七为朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈数为阳数,黑
点数为阴数,若从阳数和阴数中各取一数,则其差的绝对值大于 5 的概率为( )
A. 4
25 B. 7
25 C. 8
25 D. 2
5
5.已知单位向量 a ,满足等式 2| | | |a b ,| 2 | 13a b ,则 a 与b
的夹角为( )
A.120° B.90° C.60° D.30°
6.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.
假设在放射性同位素钍 234 的衰变过程中,其含量 N(单位:贝克)与时间 t(单位:天)满足函数关系
24
0( ) 2
t
N t N
,其中 0N 为 0t 时钍 234 的含量.已知 24t 时,钍 234 含量的瞬时变化率为 8ln 2 ,则
(96)N ( )
A.12 贝克 B.12ln 2 贝克 C.24 贝克 D. 24ln2贝克
7.如图 2,设椭圆 1C :
2 2
2 2 1x y
a b
( 0a b )与双曲线 2C :
2 2
2 2 1x y
m n
( 0m , 0n )的公共焦
点为 1F , 2F ,将 1C , 2C 的离心率分别记为 1e , 2e ,点 A 是 1C , 2C 在第一象限的公共点,若点 A 关于 2C
的一条渐近线的对称点为 1F ,则 2 2
1 2
2 2
e e
( )
A.2 B. 5
2 C. 7
2 D.4
8.已知可导函数 ( )f x 的导函数为 ( )f x ,若对任意的 x R ,都有 ( ) ( ) 2f x f x ,且 ( ) 2021f x 为奇
函数,则不等式 ( ) 2019 2xf x e 的解集为( )
A. (0, ) B. ( ,0) C. ( , )e D. 1,e
二、多选题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合题目要求。全部
选对的得 5 分,有选错的得 0 分,部分选对的得 3 分。
9.2020 年初,突如其来的疫情改变了人们的消费方式,在目前疫情防控常态化背景下,某大型超市为了解
人们以后消费方式的变化情况,更好的提高服务质量,收集并整理了本超市 2020 年 1 月份到 8 月份的线上
收入和线下收入的数据,并绘制如下的折线图 3.根据折线图,下列结论正确的是( )
A.根据该超市这 8 个月折线图可知,线下收入的平均值在 7,8 内
B.根据该超市这 8 个月折线图可知,线上收入的极差比线下收入的极差大
C.根据该超市这 8 个月折线图可知,每月总收入与时间呈现负相关
D.根据该超市这 8 个月折线图可知,在疫情逐步得到有效控制后,人们比较愿意线下消费
10.已知函数 ( ) sin( )f x x ( 0 ,| | 2
)的最小正周期为 2 .把函数 ( )f x 的图象向左平移 2
3
个单位长度得到的图象对应的函数为偶函数,则( )
A.
6
B. ,06
是 ( )f x 的图象的对称中心
C. ( )f x 在 0, 2
上单调递增 D. ( )f x 在 0, 上的值域为 1 ,12
11.已知抛物线 C: 2 4y x 的焦点为 F, 1 1,P x y , 2 2,Q x y 是抛物线上两点,则下列结论正确的是( )
A. C 的准线方程: 1x
B.若直线 PQ过点 F,则 1 2 4x x
C.若 5| | | | 2PF QF ,则线段 PQ的中点 M 到 y 轴的距离为 1
4
D.若 PF QF ,则 2OPQS △
12.已知5 3a ,8 5b ,则( )
A. a b B. 1 1 2a b
C. 1 1a ba b
D. b aa a b b
三、填空题:本题共 4 小题,每小题 5 分,第 15 题第一问 2 分,第 2 问 3 分,共 20 分。
13. tan 765 __________.
14.已知圆 O 的半径为 5, 4OP ,过点 P 的 2021 条弦的长度组成一个等差数列 na ,最短弦长为 1a ,最
长弦长为 2021a ,则公差 d __________.
15.定义:在等式中 2 0 2 1 2 1 2 2 2 2 1 22 n n n n n n
n n n n nx x D x D x D x D x D ( *n N )中,把 0
nD , 1
nD ,
2
nD ,… 2n
nD 叫做三项式 2 2 n
x x 的 n 次系数列(如三项式的 1 次系数列是 1,-1,-2).则(1)三项
式 2 2 n
x x 的 2 次系数列各项之和等于__________;(2) 9
5D __________.
16.如图 4,已知球 O 是直三棱柱 1 1 1ABC A B C 的外接球, 1 6AC BC CC , AC BC ,E,F 分别
为 1BB , 1 1AC 的中点,过点 A,E,F 作三棱柱的截面α,若α交 1 1B C 于 M,过点 M 作球 O 的截面,则所得
截面圆面积的最小值是__________.
四、解答题:本大题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分 10 分)
设 na 为等差数列, nb 是正项等比数列,且 1 1 2a b , 3 22a b .在① 5 3 112b b b ,② 5 42a b ,
③ 2 2 1log log 1n nb b , 2n , *n N 这三个条件中任选一个,求解下列问题:
(Ⅰ)写出你选择的条件并求数列 na 和 nb 的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若 n n nc a b ( *n N ),求数列 nc 的前 n 项和 nS .
18.(本小题满分 12 分)
如图 5,在平面四边形 ABCD 中, AB AD , 1AB , 3AD , 2BC .
(I)若 2 2CD ,求四边形 ABCD 的面积;
(Ⅱ)若 7cos 5BCD , 0, 2ADC
,求 sin ADC .
19.(本小题满分 12 分)
如图 6,在直四棱柱 1 1 1 1ABCD A B C D 中,四边形 ABCD 为平行四边形,M 为 1AA 的中点, 1BC BD ,
1 2AB AA .
(Ⅰ)求证:平面 BMD 平面 BDC ;
(Ⅱ)求二面角 1 1D MC C 的正弦值.
20.(本小题满分 12 分)
已知椭圆 C:
2 2
2 2 1x y
a b
( 0a b )的离心率为 3
3
,直线 5 0x y 与椭圆 C 有且只有一个公共
点.
(Ⅰ)求椭圆 C 的标准方程
(Ⅱ)设点 ( 3,0)A , ( 3,0)B ,P 为椭圆 C 上一点,且直线 PA 与 PB 的斜率乘积为 2
3
,点 M,N
是椭圆 C 上不同于 A,B 的两点,且满足 //AP OM , //BP ON ,求证: OMN△ 的面积为定值.
21.(本小题满分 12 分)
已知函数 ( ) 1 lnxf x ae x
(Ⅰ)当 1a ,讨论函数 ( )f x 的单调性;
(Ⅱ)若不等式 ( ) x af x e x x ( 0a ),对 (1, )x 恒成立,求实数 a 的取值范围.
22.(本小题满分 12 分)
垃圾分类,是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列
活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.垃圾分类后,大部分运往垃圾处
理厂进行处理.为了监测垃圾处理过程中对环境造成的影响,某大型垃圾处理厂为此建立了 5 套环境监测系
统,并制定如下方案:每年工厂的环境监测费用预算定为 80 万元,日常全天候开启 3 套环境监测系统,若
至少有 2 套系统监测出排放超标,则立即检查污染处理系统;若有且只有 1 套系统监测出排放超标,则立
即同时启动另外 2 套系统进行 1 小时的监测,且后启动的这 2 套监测系统中只要有 1 套系统监测出排放超
标,也立即检查污染处理系统.设每个时间段(以 1 小时为计量单位)被每套系统监测出排放超标的概率均
为 p( 0 1p ),且各个时间段每套系统监测出排放超标情况相互独立.
(Ⅰ)当 1
2p 时,求某个时间段需要检查污染处理系统的概率;
(Ⅱ)若每套环境监测系统运行成本为 20 元/小时(不启动则不产生运行费用),除运行费用外,所有的环
境监测系统每年的维修和保养费用需要 6 万元.现以此方案实施,问该工厂的环境监测费用是否会超过预算
(全年按 9000 小时计算)?并说明理由.
郴州市 2021 届高三第二次教学质量监测试卷
数学参考答案及评分细则
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要
求的。
1-5 BCDAC 6-8 CDA
二、多选题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,多项是符合题目要求的。
全部选对得 5 分,有选错得 0 分,部分选对得 3 分。
9.AD 10.BCD 11.ACD 12.ABD
三、填空题:本题共 4 小题,每小题 5 分,第 16 题第一问 2 分,第 2 问 3 分,共 20 分。
13.1 14. 1
505 15.(1)4 (2)-80 16.8
四、解答题:本大题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ)选择①:设 na 的公差为 d, nb 的公比为 q( 0q ).
则根据题意有 4 2
2 2 4
2 2 24
d q
q q
,·················································································(2 分)
解得 2
3
q
d
············································································································· (4 分)
所以, 2 3( 1) 3 1na n n 12 2 2n n
nb ·························································(5 分)
选择②:设 na 的公差为 d, nb 的公比为 q( 0q ).
则根据题意有 3
2 2 4
2 4 2 2
d q
d q
,··············································································· (2 分)
解得 2
3
q
d
············································································································· (4 分)
所以 2 3( 1) 3 1na n n , 12 2 2n n
nb .····················································· (5 分 )
选择③:由 2 2 1log log 1n nb b , 2n , *n N 得
2 2 1log log 1n nb b ∴
1
2n
n
b
b
·············································································· (2 分)
∴ nb 的公比为 2q 又 2 2 4d q ∴ 3d ·····························································(4 分)
所以 2 3( 1) 3 1na n n , 12 2 2n n
nb .··························································· (5 分)
(Ⅱ)由(Ⅰ)可知 (3 1) 2n
nc n ··········································································· (6 分)
2 32 2 5 2 8 2 (3 1) 2n
nS n ①
2 3 12 2 2 5 2 (3 4)2 (3 1)2n n
nS n n ②···················································· (7 分)
①-②得 2 3 12 2 3 2 3 2 3 2 (3 1) 2n n
nS n ············································(8 分)
2 3 14 3 2 2 2 (3 1)2n nn ········································································ (9 分)
∴
2
12 2 24 3 (3 1)21 2
n
n
nS n
1(3 4)2 8nn ··································································································· (10 分)
18.(Ⅰ)连接 BD,在 Rt ABD△ 中
由勾股定理得: 2 2 2 4BD AB AD ,所以 2BD ················································· (1 分)
在 BCD△ 中,由余弦定理知:
2 2 2 3cos 2 4
BC CD BDC BC CD
·····································(3 分)
∴ 2 7sin 1 cos 4C C ··················································································· (4 分)
所以 1 7sin2 2BCDS BC CD C △ , 1 3
2 2ABDS AB AD △ ···································· (5 分)
所以 ABCD 的面积 3 7
2ABD BCDS S S △ △ ························································· (6 分)
(Ⅱ)由 7cos 5BCD 得 3 2sin 5BCD ·····························································(7 分)
在 BCD△ 中,由正弦定理知:
sin sin
BC BD
BDC BCD
所以 sin 3sin 5
BC BCDBDC BD
········································································· (8 分)
因为 0, 2ADC
,所以 0, 2BDC
, 4cos 5BDC ····································(9 分)
在 Rt ABD△ 中, 3tan 3
ABADB AD
,所以
6ADB ······································(10 分)
所以 3 3 4 1 4 3 3sin sin 6 5 2 5 2 10ADC BDC
·································· (12 分)
19.(Ⅰ)因为 1BC BD , 2CD AB .可得 2 2 2BC BD CD ,
∴ BD BC ,又∵ //AD BC ,∴ BD AD .
又∵ 1 1 1 1ABCD A B C D 是直四棱柱,
∴ 1DD 平面 ABCD .∴ 1DD BD .
1DD AD D ,∴ BD 平面 1 1ADD A ,
∴ BD MD .·········································································································· (2 分)
法一:取 1BB 中点 N,连接 NC , MN ,
∵ //MN DC ,∴四边形 MNCD 为平行四边形,∴ //MD NC ,
∵
1
2
2
NB BC
BC CC
,∴ 1NBC BCC∽△ △ ,∴ 1 90C BC BCN ,∴ 1BC CN ,
又∵ //MD NC ,∴ 1MD BC .··················································································· (4 分)
又 1BC BD B ,∴ MD 平面 1BDC .······································································(5 分)
又 MD 平面 MBD ,所以平面 BMD 平面 1BDC .······················································ (6 分)
法二:连接 1 1AC ,可计算得 1
22
2C M , 6
2MD , 1 2C D ,
所以 2 2 2
1 1MD C D MC ,由勾股定理的逆定理得: 1MD DC ,余同法一
(Ⅱ)以 DA为 x 轴, DB为 y 轴, 1DD 为 z 轴,建立如图所示的坐标系,
则 (0,1,0)B , 1( 1,1, 2)C , 1(0,0, 2)D , 21,0, 2M
∴ 1
22,1, 2MC
, 1 (0,0, 2)CC , 1 1 ( 1,1,0)D C
············································ (7 分)
设 平 面 1C CM 的 法 向 量 为 ( , , )n x y z , 由 1
1
0
0
CC n
MC n
得 2 0
2 3 0
z
x y z
可 求 得 一 个 法 向 量
(1,2,0)n ············································································································· (8 分)
同理可得平面 1 1D C M 的一个法向量 (1,1, 2)m ························································· (10 分)
设二面角 1 1D MC C 的大小为θ
所以 | | 3 3 5| cos | | cos , | | || | 102 5
m nm n m n
·····················································(11 分)
则 55sin 10
,即二面角 1M BC D 的正弦值为 55
10 .·············································(12 分)
20.解:(Ⅰ)∵直线 5 0x y 与椭圆有且只有一个公共点,
∴直线 5 0x y 与椭圆 C:
2 2
2 2 1x y
a b
( 0a b )相切,
∴ 2 2
2 2
5 0
1
x y
x y
a b
2 2 2 2 2 2 22 5 5 0b a x a x a a b ·········································· (3 分)
∴ 2 20 5a b
又∵ 3
3
c
a
,∴ 3a ,∴ 2 2 2 2b a c ,
椭圆 C 的方程为
2 2
13 2
x y .······················································································(5 分)
(Ⅱ)证明:由题意 M、N 是椭圆 C 上不同于 A,B 的两点,
由题意知,直线 AP , BP 斜率存在且不为 0,又由已知 2
3AP BPk k .
由 //AP OM , //BP ON ,所以 2
3OM ONk k ······························································ (6 分)
设直线 MN 的方程为 x my t ,
代入椭圆方程得 2 2 22 3 4 2 6 0m y mty t ①······················································(7 分)
设 1 1,M x y , 2 2,N x y ,
则 1 2 2
4
2 3
mty y m
,
2
1 2 2
2 6
2 3
ty y m
······································································ (8 分)
又
2
1 2 1 2
2 2 2 2
1 2 1 2 1 2
2 6 2
3 6 3OM ON
y y y y tk k x x m y y mt y y t t m
··································· (9 分)
得 2 22 2 3t m ·····································································································(10 分)
所以
2 2
1 2 2 2
1 1 48 24 72 1 2 6 | | 6| | | | | |2 2 2 3 2 2 2MON
m t tS t y y t tm t
△
即 MON△ 的面积为定值 6
2 ·················································································(12 分)
21.解:(Ⅰ) ( )f x 的定义域为 (0, ) , 1( ) lnxf x e x x
,······································ (1 分)
令 1( ) lng x x x
,则 2 2
1 1 1( ) xg x x x x
,·····························································(2 分)
当 (0,1)x 时, ( ) 0g x , ( )g x 单调递减,
当 (1, )x 时, ( ) 0g x , ( )g x 单调递增,······························································(3 分)
∴ 1x 时, ( )g x 取得极小值即最小值 (1) 1g ,
∴ ( ) 0f x 在 (0, ) 恒成立,·················································································· (4 分)
∴ ( )f x 在 (0, ) 单调递增;····················································································· (5 分)
(Ⅱ)不等式 ( ) x af x e x x 等价于 ln ln lnx a x x a ae x x a x e e x x ,····· (6 分)
设 ( ) lnk t t t ,即 x ak e k x (*)
∵ 1 1( ) 1 tk t t t
································································································· (7 分)
∴当 (0,1)t , ( ) 0k t , ( )k t 在 (0,1) 是减函数
(1, )t , ( ) 0k t , ( )k t 在 (1, ) 是增函数 ·························································(8 分)
∵ (1, )x , 10 1xe e ···············································································(9 分)
当 0a 时, 0 1ax ,且 ( )k t 在 (0,1) 是减函数
则(*)式
ln
x a xe x a x
令 ( ) ln
xh x x
( 1x ),则 2
ln 1( ) (ln )
xh x x
,······························································ (10 分)
当 (1, )x e 时, ( ) 0h x , ( )h x 单调递减,
当 ( , )x e 时, ( ) 0h x , ( )h x 单调递增,····························································(11 分)
min( ) ( )h x h e e a e ∴ a e 又 0a ∴ 0e a ································· (12 分)
22.(Ⅰ)设某个时间段在需要开启 3 套系统就被确定需要检查污染源处理系统的事件为 A
2 3 3 3
2 2 3 3 2 3 2 3
3 3 3 3 3 3
1 1 1 1 1 1( ) (1 ) 2 2 2 2 2 2P A C p p C p C C C C
,···············(2 分)
设某个时间段在需要开启另外 2 套系统才能确定需要检查污染源处理系统的事件为 B
3 2
1 2 2 1
3 3
1 1 9( ) (1 ) 1 (1 ) 12 2 32P B C p p p C
···········································(5 分)
∴某个时间段需要检查污染源处理系统的概率为 1 9 25
2 32 32
··········································· (6 分)
(Ⅱ)设某个时间段环境监测系统的运行费用为 X 元,则 X 的可能取值为 60,100.···············(7 分)
1 2
3( 100) (1 )P X C p p 1 2
3( 60) 1 (1 )P X C p p ···············································(8 分)
1 2 1 2 2
3 3( ) 60 1 (1 ) 100 (1 ) 60 120 (1 )E X C p p C p p p p
令 2( ) (1 )g p p p , (0,1)p ,则 2( ) (1 ) 2 (1 ) (3 1)( 1)g p p p p p p .··············(9 分)
当 10, 3p
时, ( ) 0g p , ( )g p 在 10, 3
上单调递增,
当 1,13p
时, ( ) 0g p , ( )g p 在 1,13
上单调递减,············································ (10 分)
∴ ( )g p 的最大值为 1 4
3 27g
,············································································· (11 分)
∴实施此方案,最高费用为 446 9000 60 120 10 7627
(万元),
∵ 76 80 ,故不会超过预算.···················································································· (12 分)