- 52.82 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
四川省泸县第九中学高中数学《1.1.1集合间的基本关系》教案 新人教A版必修1
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N;(2) Q;(3)-1.5 R
2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、 新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作A B
用Venn图表示两个集合间的“包含”关系
B
A
(二) 集合与集合之间的 “相等”关系;
,则中的元素是一样的,因此
即
练习
结论:
任何一个集合是它本身的子集
(一) 真子集的概念
若集合,存在元素,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
(二) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(三) 结论:
,且,则
(四) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x5},并表示A、B的关系;
(五) 课堂练习
(六) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(七) 作业布置
1、 书面作业:习题1.1 第5题
2、 提高作业:
已知集合,≥,且满足,求实数的取值范围。
设集合,
,试用Venn图表示它们之间的关系。
板书设计(略)