- 329.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题56 事件与概率
1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;
2.了解两个互斥事件的概率加法公式.
1.概率与频率
(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).
(2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似值.
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A
(或A⊆B)
相等关系
若B⊇A且A⊇B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B
(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B
(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
P(A∪B)=1
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
高频考点一 随机事件间的关系
【例1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )
A.① B.②④ C.③ D.①③
解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.
其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.
答案 C
【方法规律】(1)本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
(2)准确把握互斥事件与对立事件的概念.
①互斥事件是不可能同时发生的事件,但可以同时不发生.
②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
【变式探究】 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
高频考点二 随机事件的频率与概率
【例2】 (2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解 (1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P (A)的估计值为0.55.
因此,续保人本年度平均保费的估计值为1.192 5a.
【方法规律】(1)解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
(2)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
【变式探究】某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
甲
乙
丙
丁
顾客人数
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为=0.2,
顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
高频考点三 互斥事件与对立事件的概率
【例3】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数/人
x
30
25
y
10
结算时间/(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
解 (1)由已知得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为
=1.9(分钟).
(2)记A表示事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得
P(A1)==,P(A2)==,P(A3)==.
因为A=A1∪A2∪A3,且A1,A2,A3彼此是互斥事件,
所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)
=++=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
【方法规律】(1)①求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
②结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(A)求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
【变式探究】 某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=,P(B)==,
P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==.
故1张奖券的中奖概率为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-=.
故1张奖券不中特等奖且不中一等奖的概率为.
1.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B. C. D.
解析 设“两人下成和棋”为事件A,“甲获胜”为事件B.事件A与B是互斥事件,所以甲不输的概率P=P(A∪B)=P(A)+P(B)=+=.
答案 A
2.(2016·课标全国Ⅰ卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B.
C. D.
答案:C
3.(2015·江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
解析:从4只球中随机一次摸出2只球有6种不同结果.其中“颜色相同”为事件A,且A中只有1种结果.
∴P(A)=,则所求事件的概率P(A)=1-P(A)=.
答案:
4.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
解:(1)依题意,所有可能的摸出的结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.
(2)不正确.理由如下:
由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为P1==,不中奖的概率为P2=1-P1=.
由于P1=