- 360.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数的基本性质单元检测(A卷)
班级 姓名 分数
一、选择题:(每小题5分,共30分)。
1.已知函数y = ( k+1) x +2在R上是减函数,则( )
A k>0 B k<0 C k>-1 D k<-1
2.在区间上为增函数的是 ( )
A. B. C. D.
3.若函数为奇函数,则必有( )
A. B.
C. D.
4.如果偶函数在具有最大值,那么该函数在有 ( )
A.最大值 B.最小值 C .没有最大值 D. 没有最小值
5.若一次函数y=kx+b(k≠0)在(-∞,+∞)上是单调递减函数,则点(k,b)在直角坐标平面的 ( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
6.已知函数为偶函数,则的值是( )A B C D
二、填空题:请把答案填在题中横线上(每小题5分,共20分).
7.如果定义域在区间上的函数为奇函数,则 .
8.已知函数,则函数有最 值,最值为 。
9.函数在R上为偶函数,若f (a+1)=3 , 则f(-a-1)= 。
10.函数在R上为奇函数,且,则当, .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分).
11.(16分)判定函数在f ( x ) = 3x +5在R上的单调性并加以证明.
12.(16分)判断函数的奇偶性并加以证明。
13.(18分)已知二次函数(,是常数,且),,且方程有两个相等的实数根.
(1) 求的解析式;( 2 )求函数的最值。
函数的基本性质单元检测(B卷)
班级 姓名 分数
一、选择题:(每小题5分,共30分)。
1.函数在下列哪个区间上是的单调减函数( )
A. B. C. D.
2.函数在区间是增函数,则的递增区间是 ( )
A. B. C. D.
3.已知且,则 ( )
A. –26 B. –18 C. –10 D. 10
4.如果奇函数在区间 上是增函数且最大值为,那么在区间
上是( )
A 增函数且最小值是 B 增函数且最大值是
C 减函数且最大值是 D 减函数且最小值是
5.若函数在区间(a,b)上为增函数,在区间(b,c)上也是增函数,则函数在区间(a,c)上( )
(A)必是增函数 (B)必是减函数
(C)是增函数或是减函数 (D)无法确定增减性
6.设α,β是方程x2-2mx+1-m2=0 (m∈R)的两个实根,则+的最小值( )
A. -2 B. 0 C. 1 D. 2
二、填空题:请把答案填在题中横线上(每小题5分,共20分)
7.若函数是偶函数,则的递减区间是
8.构造一个满足下面三个条件的函数,
①函数在上递减;②函数具有奇偶性;③函数有最小值为 .
9.已知函数的图象关于直线对称,且在区间上,当时,有最小值3,则在区间上,当____时,有最____值为_____.
10.若y = ax, y =-在上都是减函数,则在上是
______ 函数(选填“增”或“减”)。
三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分).
11.(16分)设函数,判断它的奇偶性并证明你的结论.
12.(16分)讨论函数y=kx+2的单调性并证明你的结论.
13.(18分)已知函数
(1) 当时,求函数的最大值和最小值;
(2) 求实数的取值范围,使在区间上是单调函数
函数的基本性质单元检测(A卷)参考答案
一、DBBACB
二、7.8; 8.小,2; 9.3; 10.x-1;
三、11解:函数f ( x ) = 3x +5在R上为增函数.
证明:任取x 1 , x 2∈R,且x 1<x 2,则
f(x 1)-f(x 2)=(3 x 1 +5) -( 3x 2+5)= 3 x 1 +5- 3x 2- 5
= 3 x 1-3x 2 =3(x 1-x 2)
由x 1<x 2 得 x 1-x 2<0 所以 3(x 1-x 2) <0
因此f(x 1)-f(x 2) <0 即f(x 1) < f(x 2)
所以函数在f ( x ) = 3x +5在R上为增函数。
12.解:函数为奇函数。
证明:对于函数,其定义域为{x|x≠0}.
因为对于定义域内的每一个x,都有
f(-x)=(-x)3 + =-x3 - =-(x3 + )=-f(x)
所以函数为奇函数。
13.(1)由题设有两个相等的实数根,所以 =
即有两个相等的实数根
∴△=(b-1)2-4×a×0 = 0, 即 .
又,即, ∴解得,.
( 2 )由二次函数, 得 a=<0,所以抛物线开口向下,即函数有最大值,。
函数的基本性质单元检测(B卷)参考答案
一、 BBAADC
二、 7、(0,+∞); 8、y=x2+1; 9、5,小,3;10、减.
三、 11、解:函数为偶函数。
证明:对于函数,其定义域为{x|x≠±1}.
因为对于定义域内的每一个x,都有
f(-x)= f(x)
所以函数为偶函数。
12、证明:任取x 1 , x 2∈R,且x 1<x 2,则
f(x 1)-f(x 2)=
由x 1<x 2 得 x 1-x 2<0 所以
若k<0,则>0,因而,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),
函数y=kx+2在R上为减函数。
若k=0, 则=0, 因而,f(x 1)-f(x 2)=0,即f(x 1) = f(x 2),
函数y=kx+2在R上不具有单调性。
若k>0, 则<0,因而,f(x 1)-f(x 2) <0 即f(x 1) < f(x 2)
函数y=kx+2在R上为增函数。
13、解:
对称轴
∴
(2)对称轴当或时,在上单调 ∴或