- 1.98 MB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
天津南开中学2020届高三年级开学考试
南开中学2020届高三数学统练(1)
一、选择题
1.设集合,则( )
A. B. C. D.
【答案】D
【解析】
【分析】
求出后可求.
【详解】,故,
故选D.
【点睛】本题考查集合的运算,此类问题属于基础题.
2.设,则“”是“”的( )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【解析】
【分析】
分别求出两不等式的解集,根据两解集的包含关系确定.
【详解】化简不等式,可知 推不出;
由能推出,
故“”是“”的必要不充分条件,
故选B.
【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.
3.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为
A. B. C. D.
【答案】D
【解析】
分析】
先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.
【详解】解法一:为边长为2的等边三角形,为正三棱锥,
,又,分别为、中点,
,,又,平面,平面,,为正方体一部分,,即 ,故选D.
解法二:
设,分别为中点,
,且,为边长为2的等边三角形,
又
中余弦定理,作于,,
为中点,,,
,,又,两两垂直,,,,故选D.
【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.
4.已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
A. B. C. 2 D.
【答案】D
【解析】
【分析】
只需把用表示出来,即可根据双曲线离心率的定义求得离心率.
【详解】抛物线的准线的方程为,
双曲线的渐近线方程为,
则有
∴,,,
∴.
故选D.
【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度.
5.已知,,,则的大小关系为( )
A. B.
C. D.
【答案】A
【解析】
【分析】
利用等中间值区分各个数值的大小.
【详解】,
,
,故,
所以.
故选A.
【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.
6.设,表示不超过的最大整数.若存在实数,使得,,…,同时成立,则正整数的最大值是( )
A. 3 B. 4 C. 5 D. 6
【答案】B
【解析】
因为表示不超过的最大整数.由得,
由得,
由得,所以,
所以,
由得,
所以,
由得,与矛盾,
故正整数的最大值是4.
考点:函数的值域,不等式的性质.
7.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则( )
A. B. C. D.
【答案】C
【解析】
【分析】
只需根据函数性质逐步得出值即可.
【详解】因为为奇函数,∴;
又
,,又
∴,
故选C.
【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数.
8.已知,设函数若关于的不等式在上恒成立,则的取值范围为( )
A. B. C. D.
【答案】C
【解析】
【分析】
先判断时,在上恒成立;若在上恒成立,转化为在上恒成立.
【详解】∵,即,
(1)当时,,
当时,,
故当时,在上恒成立;
若在上恒成立,即在上恒成立,
令,则,
当函数单增,当函数单减,
故,所以.当时,在上恒成立;
综上可知,的取值范围是,
故选C.
【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.
二、填空题
9.展开式中的常数项为________.
【答案】
【解析】
【分析】
根据二项展开式的通项公式得出通项,根据方程思想得出的值,再求出其常数项.
【详解】,
由,得,
所以的常数项为.
【点睛】本题考查二项式定理的应用,牢记常数项是由指数幂为0求得的.
10.设,则的最小值为______.
【答案】
【解析】
【分析】
把分子展开化为,再利用基本不等式求最值.
【详解】
,
当且仅当,即时成立,
故所求的最小值为.
【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.
11. 在四边形中,, , , ,点在线段的延长线上,且,则__________.
【答案】.
【解析】
分析】
建立坐标系利用向量的坐标运算分别写出向量而求解.
【详解】建立如图所示的直角坐标系,则,.
因为∥,,所以,
因为,所以,
所以直线的斜率为,其方程为,
直线的斜率为,其方程为.
由得,,
所以.
所以.
【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.
12.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.
【答案】4
【解析】
【分析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.
【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.
故答案为4
【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.
13.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.
【答案】
【解析】
分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.
详解:分类讨论:当时,方程即,
整理可得:,
很明显不是方程的实数解,则,
当时,方程即,
整理可得:,
很明显不是方程的实数解,则,
令,
其中,
原问题等价于函数与函数有两个不同的交点,求的取值范围.
结合对勾函数和函数图象平移的规律绘制函数的图象,
同时绘制函数的图象如图所示,考查临界条件,
结合观察可得,实数的取值范围是.
点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
14.已知,函数在区间[1,4]上的最大值是5,则a的取值范围是__________
【答案】
【解析】
,分类讨论:
①当时,,
函数的最大值,舍去;
②当时,,此时命题成立;
③当时,,则:
或,解得:或
综上可得,实数的取值范围是.
【名师点睛】本题利用基本不等式,由,得,通过对解析式中绝对值符号的处理,进行有效的分类讨论:①;②;③,问题的难点在于对分界点的确认及讨论上,属于难题.解题时,应仔细对各种情况逐一进行讨论.
三、解答题
15. 在中,内角所对的边分别为.已知,.
(Ⅰ)求的值;
(Ⅱ)求的值.
【答案】(Ⅰ) ;
(Ⅱ) .
【解析】
【分析】
(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值
(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.
【详解】(Ⅰ)在中,由正弦定理得,
又由,得,即.
又因为,得到,.
由余弦定理可得.
(Ⅱ)由(Ⅰ)可得,
从而,.
故
【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.
16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量
的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
【分析】
(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;
(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.
【详解】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,
故,从面.
所以,随机变量的分布列为:
0
1
2
3
随机变量的数学期望.
(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则.
且.
由题意知事件与互斥,
且事件与,事件与均相互独立,
从而由(Ⅰ)知:
.
【点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.
17.如图,平面,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若二面角的余弦值为,求线段的长.
【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)
【解析】
【分析】
首先利用几何体的特征建立空间直角坐标系
(Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;
(Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;
(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.
【详解】依题意,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),
可得.
设,则.
(Ⅰ)依题意,是平面ADE的法向量,
又,可得,
又因为直线平面,所以平面.
(Ⅱ)依题意,,
设为平面BDE的法向量,
则,即,
不妨令z=1,可得,
因此有.
所以,直线与平面所成角的正弦值为.
(Ⅲ)设为平面BDF的法向量,则,即.
不妨令y=1,可得.
由题意,有,解得.
经检验,符合题意。
所以,线段的长为.
【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.
18.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
【答案】(Ⅰ)(Ⅱ)或.
【解析】
【分析】
(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;
(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.
【详解】(Ⅰ) 设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.
所以,椭圆方程为.
(Ⅱ)由题意,设.设直线的斜率为,
又,则直线的方程为,与椭圆方程联立,
整理得,可得,
代入得,
进而直线的斜率,
在中,令,得.
由题意得,所以直线的斜率为.
由,得,
化简得,从而.
所以,直线的斜率为或.
【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.
19.设是等差数列,是等比数列.已知.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足其中.
(i)求数列的通项公式;
(ii)求.
【答案】(Ⅰ);(Ⅱ)(i)(ii)
【解析】
【分析】
(Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可;
(Ⅱ)结合(Ⅰ)中的结论可得数列的通项公式,结合所得的通项公式对所求的数列通项公式进行等价变形,结合等比数列前n项和公式可得的值.
【详解】(Ⅰ)设等差数列的公差为,等比数列的公比为.
依题意得,解得,
故,.
所以,的通项公式为,的通项公式为.
(Ⅱ)(i).
所以,数列的通项公式为.
(ii)
.
【点睛】本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.
20.设函数为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明;
(Ⅲ)设为函数在区间内的零点,其中,证明.
【答案】(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明
【解析】
【分析】
(Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间;
(Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论;
(Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果.
【详解】(Ⅰ)由已知,有.
当时,有,得,则单调递减;
当时,有,得,则单调递增.
所以,的单调递增区间为,
单调递减区间为.
(Ⅱ)记.依题意及(Ⅰ)有:,
从而.当时,,故
.
因此,区间上单调递减,进而.
所以,当时,.
(Ⅲ)依题意,,即.
记,则.
且.
由及(Ⅰ)得.
由(Ⅱ)知,当时,,所以在上为减函数,
因此.
又由(Ⅱ)知,故:
.
所以.
【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.