- 184.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
二、数形结合思想
以形助数(数题形解)
以数辅形(形题数解)
借助形的生动性和直观性来阐述数之间的关系,把数转化为形,即以形作为手段,数作为目的解决数学问题的数学思想
借助于数的精确性和规范性及严密性来阐明形的某些属性,即以数作为手段,形作为目的解决问题的数学思想
数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合
方法一 函数图象数形沟通法
模型解法
函数图象数形沟通法,即通过函数图象来分析和解决函数问题的方法,对于高中数学函数贯穿始终,因此这种方法是最常用的沟通方法.破解此类题的关键点:
①分析数理特征,一般解决问题时不能精确画出图象,只能通过图象的大概性质分析问题,因此需要确定能否用函数图象解决问题.
②画出函数图象,画出对应的函数、转化的函数或构造函数的图象.
③数形转化,这个转化实际是借助函数图象将难以解决的数理关系明显化.
④得出结论,通过观察函数图象得出相应的结论.
典例1 设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0≤f(x)≤1;当x∈(0,π)且x≠时,f′(x)>0.则函数y=f(x)-sin x在[-3π,3π]上的零点个数为( )
A.4 B.5
C.6 D.8
解析 ∵当x∈[0,π]时,0≤f(x)≤1,f(x)是最小正周期为2π的偶函数,
∴当x∈[-3π,3π]时,0≤f(x)≤1.
∵当x∈(0,π)且x≠时,f′(x)>0,
∴当x∈时,f(x)为单调减函数;
当x∈时,f(x)为单调增函数,
∵当x∈[0,π]时,0≤f(x)≤1,
定义在R上的函数f(x)是最小正周期为2π的偶函数,在同一坐标系中作出y=sin x和y=f(x
)的草图如图,
由图知y=f(x)-sin x在[-3π,3π]上的零点个数为6,故选C.
答案 C
思维升华 由函数图象的变换能较快画出函数图象,应该掌握平移(上下左右平移)、翻折(关于特殊直线翻折)、对称(中心对称和轴对称)等基本转化法与函数解析式的关系.
跟踪演练1 已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)=-x3,则关于x的方程f(x)=|cos πx|在上的所有实数解之和为( )
A.-7 B.-6
C.-3 D.-1
答案 A
解析 因为函数f(x)为偶函数,所以f(-x-1)=f(x+1)=f(x-1),所以函数f(x)的周期为2,如图,在同一平面直角坐标系内作出函数y=f(x)与y=|cos πx|的图象,
由图知关于x的方程f(x)=|cos πx|在上的实数解有7个.不妨设7个解中x1