- 818.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学热点难点突破技巧第06讲:
导数中的双参数问题的处理
【知识要点】
对于导数中的单参数问题(零点问题、恒成立问题和存在性问题),大家解答的比较多,一般利用分离参数和分类讨论 分析解答. 对于双参数这些问题,大家如何处理呢?一般利用下面分离次参法和反客为主法两种方法处理.
【方法讲评】
方法一
分离次参法
使用情景:学 ]
不等式中含有两个参数(主参数和次参数)和一个自变量,并且次参数比较容易分离.
解题步骤
一般先分离次参,变成单参数的问题处理.
【例1】已知函数.
(1)若函数与函数在点处有共同的切线,求的值;
(2)证明:;
(3)若不等式对所有,都成立,求实数的取值范围.
【解析】(1),,,
与在点处有共同的切线,
,即,
设,,
故在上是增函数,在上是减函数,故,
;
(3)由题得不等式对所有的,都成立, : | ]
因为,所以,所以,即
所以,所以
【点评】对于不等式,里面有两个参数和一个自变量,形式比较复杂,所以我们可以想到转化和化归的思想,想方法把双参数变成单参数,这个方法就是分离参数. 由于题目求的是的范围,所以我们称是主参数,是次参数.第(3)问首先分离次参,最后得到了的取值范围,因此这种方法可以称为“分离次参法”.
【反馈检测1】已知,设函数.
(1)存在,使得是在上的最大值,求的取值范围;
(2)对任意恒成立时,的最大值为1,求的取值范围.
方法二
反客为主法
使用情景
含有两个参数和一个自变量,但是次参数系数有正有负,不便分离.
解题步骤
把次参数看成自变量,把自变量看成参数,构造一次函数解答.
【例2】已知函数.若不等式对所有,都成立,求实数的取值范围.
:学 ]
因为,所以
所以
令
所以函数在上是增函数,在上是减函数,
所以
所以 综合得.
【点评】(1)在中,是自变量,要求的范围,所以是主参,是次参.(2)对于不等式,由于,有正有负,不便分离次参,所以我们要构造一次函数反客为主,中把次参看成自变量,把看作参数,利用一次函数的性质分析解答.(3)一次函数在上恒成立,只须满足.(4)对于“分离次参”的题目,也可以利用反客为主的方法解答.学
【反馈检测2】已知函数,,,.
(Ⅰ)讨论的单调性;
(Ⅱ)对于任意,任意,总有,求的取值范围.
【反馈检测3】已知函数.
(1)当时,解关于的不等式;
(2)若对任意及时,恒有成立,求实数的取值范围.
高中数学热点难点突破技巧第06讲:
导数中的双参数问题的处理参考答案
【反馈检测1答案】(1);(2) .
③当时,在单调递增,在递减,在单调递增,
∴即,∴,
④当时, 在单调递增,在单调递减,满足条件,
综上所述:时,存在,使得是在上的最大值.
(2)对任意恒成立, : ]
即对任意恒成立,
因为的最大值为1,
所以,
所以
,,
恒成立,
由于,则,
当时,,则,若,则在上递减,在上递增,则,∴在上是递增的函数.
∴,满足条件,∴的取值范围是.
【反馈检测2详细解析】(Ⅰ)则
当时,恒成立,即递减区间为,不存在增区间;
当时,令得,令得,
递减区间为,递增区间;
综上:当时,递减区间为,不存在增区间;
当时,递减区间为,递增区间;
(Ⅱ)令,由已知得只需即
若对任意,恒成立,即
令,则
设,则
∴在递减,即
∴在递减∴即
的取值范围为.
【反馈检测3答案】(Ⅰ)(Ⅱ)
(2)由题意知对任意及时,
恒有成立,等价于,
当时,由得,
因为,所以,
从而在上是减函数,
所以,所以,即,
因为,所以,所以实数的取值范围为. 学