- 386.50 KB
- 2021-06-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
全*品*高*考*网, 用后离不了!2016-2017学年海南省国科园实验学校高二(上)期中数学试卷
一、单项选择题(本大题共12小题,共60分)
1.圆x2+y2﹣4x+2y+4=0的半径和圆心坐标分别为( )
A.r=1;(﹣2,1) B.r=2;(﹣2,1) C.r=1;(2,﹣1) D.r=2;(2,﹣1)
2.已知直线l的倾斜角为60°,则直线l的斜率为( )
A.1 B. C. D.
3.已知直线(a﹣2)x+ay﹣1=0与直线2x+3y﹣5=0垂直,则a的值为( )
A.﹣6 B.6 C.﹣ D.
4.掷两颗骰子,事件“点数之和为6”的概率是( )
A. B. C. D.
5.要完成下列两项调查:
①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;
②从某中学的5名艺术特长生中选出3名调查学习负担情况.
宜采用的方法依次为( )
A.①简单随机抽样调查,②系统抽样
B.①分层抽样,②简单随机抽样
C.①系统抽样,②分层抽样
D.①②都用分层抽样
6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
7.已知点A(1,﹣2),B(m,2),若线段AB的垂直平分线的方程是x+2y﹣2=0,则实数m的值是( )
A.﹣2 B.﹣7 C.3 D.1
8.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
54
根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
9.如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为57,100,则图形Ω面积的估计值为( )
A. B. C. D.
10.执行如图程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )
A.7 B.12 C.17 D.34
11.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为( )
A. B. C.2 D.2
12.若直线ax+by﹣3=0和圆x2+y2+4x﹣1=0切于点P(﹣1,2),则ab的值为( )
A.﹣3 B.﹣2 C.2 D.3
二、填空题(本大题共4小题,共20分)
13.点P(1,﹣1)到直线x﹣y+1=0的距离是 .
14.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:
学生
1号
2号
3号
4号
5号
甲班
6
7
7
8
7
乙班
6
7
6
7
9
则以上两组数据的方差中较小的一个为S2= .
15.已知点A(﹣3,4)B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的倾斜角的取值范围 .
16.两圆x2+y2+4y=0,x2+y2+2(a﹣1)x+2y+a2=0在交点处的切线方程互相垂直,那么实数a的值为 .
三、解答题(本大题共6小题,共70分)
17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本平均值和方差;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人.
18.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.
19.某食品安检部门调查一个养殖场的养殖鱼的有关情况,安检人员从这个养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:千克),并将所得数据进行统计得如表.
鱼的重量
[1.00,1.05)
[1.05,1.10)
[1.10,1.15)
[1.15,1.20)
[1.20,1.25)
[1.25,1.30)
鱼的条数
3
20
35
31
9
2
若规定重量大于或等于1.20kg的鱼占捕捞鱼总量的15%以上时,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.
(1)根据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否有问题?
(2)上面所捕捞的100条鱼中,从重量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼的重量在[1.00,1.05)和[1,.25,1.30)中各有1条的概率.
20.已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,
(1)点A(5,0)到l的距离为3,求l的方程;
(2)求点A(5,0)到l的距离的最大值.
21.下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x
3
4
5
6
7
y
2.5
3
4
4.5
6
(1)请根据上表提供的数据,求出y关于x的回归直线方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
附: =,a=﹣.
22.已知圆C:x2+y2﹣2x+4y﹣4=0,直线l的斜率为1,与圆交于A、B两点.
(1)若直线l经过圆C的圆心,求出直线的方程;
(2)当直线l平行移动的时候,求△CAB面积的最大值以及此时直线l的方程;
(3)是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程,若不存在,说明理由.
2016-2017学年海南省国科园实验学校高二(上)期中数学试卷
参考答案与试题解析
一、单项选择题(本大题共12小题,共60分)
1.圆x2+y2﹣4x+2y+4=0的半径和圆心坐标分别为( )
A.r=1;(﹣2,1) B.r=2;(﹣2,1) C.r=1;(2,﹣1) D.r=2;(2,﹣1)
【考点】圆的一般方程.
【分析】直接化圆的一般方程为标准方程求得答案.
【解答】解:由x2+y2﹣4x+2y+4=0,得(x﹣2)2+(y+1)2=1,
∴圆x2+y2﹣4x+2y+4=0的半径为r=1;圆心坐标为(2,﹣1),
故选:C.
2.已知直线l的倾斜角为60°,则直线l的斜率为( )
A.1 B. C. D.
【考点】直线的斜率.
【分析】可得直线l的斜率k=tan60°=.
【解答】解:∵直线l的倾斜角为60°,
∴直线l的斜率k=tan60°=,
故选:D.
3.已知直线(a﹣2)x+ay﹣1=0与直线2x+3y﹣5=0垂直,则a的值为( )
A.﹣6 B.6 C.﹣ D.
【考点】直线的一般式方程与直线的垂直关系.
【分析】利用两条直线垂直与斜率的关系即可得出.
【解答】解:∵直线(a﹣2)x+ay﹣1=0与直线2x+3y﹣5=0垂直,
∴﹣×=﹣1,解得a=.
故选:D.
4.掷两颗骰子,事件“点数之和为6”的概率是( )
A. B. C. D.
【考点】等可能事件的概率.
【分析】先计算掷两颗骰子的所有等可能的基本事件数,可利用乘法计数原理,再利用列举法求点数之和在其中的不同结果数,最后由古典概型概率计算公式即可得所求概率
【解答】解:掷两颗骰子,点数记为(a,b),则共有6×6=36种不同的等可能结果
其中点数之和为6,包含其中的(1,5),(2,4),(3,3),(4,2),(5,1)共5种不同结果
∴掷两颗骰子,事件“点数之和为6”的概率是P=
故选C
5.要完成下列两项调查:
①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;
②从某中学的5名艺术特长生中选出3名调查学习负担情况.
宜采用的方法依次为( )
A.①简单随机抽样调查,②系统抽样
B.①分层抽样,②简单随机抽样
C.①系统抽样,②分层抽样
D.①②都用分层抽样
【考点】简单随机抽样;分层抽样方法.
【分析】从总体的个体有无差异和总数是否比较多入手选择抽样方法.
①中某社区420户家庭的收入差异较大;②
中总体数量较少,且个体之间无明显差异.
【解答】解:①中某社区420户家庭的收入有了明显了差异,所以选择样本时宜选用分层抽样法;
②个体没有差异且总数不多可用简单随机抽样法.
故选:B.
6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
【考点】回归分析的初步应用.
【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.
【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;
对于B,回归直线过样本点的中心(,),故正确;
对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;
对于D,x=170cm时, =0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确
故选D.
7.已知点A(1,﹣2),B(m,2),若线段AB的垂直平分线的方程是x+2y﹣2=0,则实数m的值是( )
A.﹣2 B.﹣7 C.3 D.1
【考点】两条直线垂直与倾斜角、斜率的关系.
【分析】先利用线段的中点公式求出线段AB的终点坐标,再把中点坐标代入直线x+2y﹣2=0求得实数m的值.
【解答】解:∵A(1,﹣2)和B(m,2)的中点在直线x+2y﹣2=0上,
∴.
∴m=3,
故选 C.
8.某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
54
根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
【考点】线性回归方程.
【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.
【解答】解:∵=3.5,
=42,
∵数据的样本中心点在线性回归直线上,
回归方程中的为9.4,
∴42=9.4×3.5+a,
∴=9.1,
∴线性回归方程是y=9.4x+9.1,
∴广告费用为6万元时销售额为9.4×6+9.1=65.5,
故选:B.
9.如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为57,100,则图形Ω面积的估计值为( )
A. B. C. D.
【考点】几何概型.
【分析】根据落到不规则图形Ω和正方形中的点的个数,得到概率,即得到两者的面积的比值,根据所给的正方形的边长,求出面积,根据比值得到要求的面积的估计值.
【解答】解:由题意知撒在图形Ω内和正方形内的豆子数分别为57,100,
∴不规则图形Ω的面积:正方形的面积=57:100,
∴不规则图形Ω的面积=×正方形的面积=a2.
故选C.
10.执行如图程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )
A.7 B.12 C.17 D.34
【考点】程序框图.
【分析】根据已知中的程序框图可知:该程序的功能是计算并输出S,从而得到答案.
【解答】解:x=2,n=2,k=0,s=0,a=2,
此时s=2,k=1<2,
a=2时,s=6,k=2,不成立,
a=5时,s=17,k=3>2,成立,
输出s=17,
故选:C.
11.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为( )
A. B. C.2 D.2
【考点】两点间的距离公式.
【分析】联立,解得交点(1,2),代入mx+ny+5=0可得:m+2n+5=0.再利用两点之间的距离公式、二次函数的性质即可得出.
【解答】解:联立,解得x=1,y=2.
把(1,2)代入mx+ny+5=0可得:m+2n+5=0.
∴m=﹣5﹣2n.
∴点(m,n)到原点的距离d===,当n=﹣2,m=﹣1时,取等号.
∴点(m,n)到原点的距离的最小值为.
故选:A.
12.若直线ax+by﹣3=0和圆x2+y2+4x﹣1=0切于点P(﹣1,2),则ab的值为( )
A.﹣3 B.﹣2 C.2 D.3
【考点】直线与圆的位置关系;基本不等式.
【分析】
把圆的方程化为标准方程,找出圆心坐标和半径r,根据直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式求出圆心到已知直线的距离d,让d等于圆的半径r,化简后得到关于a与b的方程,记作①,又直线与圆的切点为P,所以把点P的坐标代入直线中,得到关于a与b的另一个关系式,记作②,联立①②即可求出a与b的值,进而求出ab的值.
【解答】解:把圆的方程化为标准方程得:(x+2)2+y2=5,
所以圆心坐标为(﹣2,0),半径r=,
∵直线与圆相切,
∴圆心到直线的距离d==r=,
化简得:a2+5b2﹣12a﹣9=0①,
把切点P的坐标代入直线方程得:﹣a+2b﹣3=0②,
联立①②,解得:a=1,b=2,
则ab的值为2.
故选C
二、填空题(本大题共4小题,共20分)
13.点P(1,﹣1)到直线x﹣y+1=0的距离是 .
【考点】点到直线的距离公式.
【分析】直接应用点到直线的距离公式求解即可.
【解答】解:由点到直线的距离公式可得:.
故答案为:
14.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:
学生
1号
2号
3号
4号
5号
甲班
6
7
7
8
7
乙班
6
7
6
7
9
则以上两组数据的方差中较小的一个为S2= 0.4 .
【考点】极差、方差与标准差.
【分析】根据表中所给的两组数据,先写出两组数据的平均数,再求出两组数据的方差,把方差进行比较,方差小的一个是甲班,得到结果.
【解答】解:由题意知甲班的投中次数是6,7,7,8,7,
这组数据的平均数是7,
甲班投中次数的方差是,
乙班的投中次数是6,7,6,7,9,
这组数据的平均数是7,
这组数据的方差是
∴两组数据的方差中较小的一个为0.4,
故答案为:0.4
15.已知点A(﹣3,4)B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的倾斜角的取值范围 45°≤α≤135° .
【考点】直线的斜率.
【分析】由题意画出图形,求出P与线段AB端点连线的倾斜角得答案.
【解答】解:如图,当直线l过B时设直线l的倾斜角为α(0≤α<π),
则tanα==1,α=45°
当直线l过A时设直线l的倾斜角为β(0≤β<π),
则tanβ==﹣1,β=135°,
∴要使直线l与线段AB有公共点,
则直线l的倾斜角α的取值范围是45°≤α≤135°.
故答案为45°≤α≤135°.
16.两圆x2+y2+4y=0,x2+y2+2(a﹣1)x+2y+a2=0在交点处的切线方程互相垂直,那么实数a的值为 ﹣2 .
【考点】圆的切线方程.
【分析】由题意结合圆的切线性质可得O1A⊥AO2,由勾股定理可得m的值,再用勾股定理求得AB的长度.
【解答】解:根据x2+y2+4y=0,得
x2+(y+2)2=4,
x2+y2+4y=0,①,
x2+y2+2(a﹣1)x+2y+a2=0,②
①﹣②,得公共弦的方程为:
2(a﹣1)x﹣2y+a2=0,
设交点为(m,n),
∴m2+n2+4n=0 ③
2(a﹣1)m﹣2n+a2=0 ④,
⑤,
联立③④⑤,得
a=±2.
a=2时,方程x2+y2+2(a﹣1)x+2y+a2=0不表示圆,应舍去
故答案为:﹣2.
三、解答题(本大题共6小题,共70分)
17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本平均值和方差;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人.
【考点】茎叶图;极差、方差与标准差.
【分析】(1)根据茎叶图,计算平均数与方差;
(2)根据样本数据中有2人日加工零件个数大于样本均值,估计优秀工人数.
【解答】解:(1)根据题意,样本平均值为:
=×(17+19+20+21+25+30)=22;…
方差为:
s2= [(17﹣22)2+(19﹣22)2+(20﹣22)2+(21﹣22)2+(25﹣22)2+(30﹣22)2]=;…
(2)因为样本数据中有2人日加工零件个数大于样本均值,
据此可以估计该车间12名工人中有优秀工人:
12×=4人.…
18.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.
【考点】古典概型及其概率计算公式;频率分布直方图.
【分析】(Ⅰ)根据频率分布直方图求出a的值;
(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.
(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.
【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.
(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,
成绩落在[60,70)中的学生人数为3×0.005×10×20=3.
(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,
其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,
故所求概率为P=.
19.某食品安检部门调查一个养殖场的养殖鱼的有关情况,安检人员从这个养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:千克),并将所得数据进行统计得如表.
鱼的重量
[1.00,1.05)
[1.05,1.10)
[1.10,1.15)
[1.15,1.20)
[1.20,1.25)
[1.25,1.30)
鱼的条数
3
20
35
31
9
2
若规定重量大于或等于1.20kg的鱼占捕捞鱼总量的15%以上时,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.
(1)根据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否有问题?
(2)上面所捕捞的100条鱼中,从重量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼的重量在[1.00,1.05)和[1,.25,1.30)中各有1条的概率.
【考点】列举法计算基本事件数及事件发生的概率.
【分析】(1)捕捞的100条鱼中间,求出数据落在[1.20,1.25)的概率,再求出数据落在[1.20,1.30)中的概率,相加即得所求.
(2)重量在[1.00,1.05)的鱼有3条,把这3条鱼分别记作A1,A2,A3,重量在[1.25,1.30)的鱼有2条,分别记作:B1,B2,写出所有的可能选法,再找出满足条件的选法,从而求得所求事件的概率.
【解答】解:(1)捕捞的100条鱼中,数据落在[1.20,1.30)中的概率约为P1==0.11,
由于0.11×100%=11%<15%,故饲养的这批鱼没有问题.
(2)重量在[1.00,1.05)的鱼有3条,把这3条鱼分别记作A1,A2,A3,
重量在[1.25,1.30)的鱼有2条,分别记作B1,B2,
那么从中任取2条的所有的可能有:
{A1,A2},{A1,A3},{A1,B1},{A1,B2},
{A2,A3},{A2,B1},{A2,B2},{A3,B1},
{A3,B2},{B1,B2}共10种.
而恰好所取得鱼的重量在[1.00,1.05)和[1.25,1.30)中各有1条的情况有:
{A1,B1},{A1,B2},{A2,B1},
{A2,B2},{A3,B1},{A3,B2},共6种.
所以恰好所取得鱼的重量在[1.00,1.05)和[1.25,1.30)中各有1条的概率p==.
20.已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,
(1)点A(5,0)到l的距离为3,求l的方程;
(2)求点A(5,0)到l的距离的最大值.
【考点】点到直线的距离公式;两条直线的交点坐标.
【分析】(1)直线方程为(2x+y﹣5)+λ(x﹣2y)=0,根据点A(5,0)到l的距离为3,建立方程解出 λ值,即得直线方程.
(2)先求出交点P的坐标,当l⊥PA时,点A(5,0)到l的距离的最大值,故最大值为|PA|.
【解答】解:(1)经过两已知直线交点的直线系方程为
(2x+y﹣5)+λ(x﹣2y)=0,即(2+λ)x+(1﹣2λ)y﹣5=0,
∵点A(5,0)到l的距离为3,∴=3.
即 2λ2﹣5λ+2=0,∴λ=2,或λ=,∴l方程为x=2或4x﹣3y﹣5=0.
(2)由解得,交点P(2,1),如图,
过P作任一直线l,设d为点A到l的距离,则d≤|PA|
(当l⊥PA时等号成立).
∴dmax=|PA|=.
21.下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x
3
4
5
6
7
y
2.5
3
4
4.5
6
(1)请根据上表提供的数据,求出y关于x的回归直线方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
附: =,a=﹣.
【考点】线性回归方程.
【分析】(1)由题意,计算、,求出回归系数,、,写出回归直线方程;
(2)计算x=100时的值,预测生产100吨甲产品的生产能耗,再计算比技改前节约的标准煤.
【解答】解:(1)由题意得: =5, =4;…
xiyi=3×2.5+4×3+5×4+6×4.5+7×6=108.5
=32+42+52+62+72=135;…
∴===0.85,…
=﹣=4﹣0.85×5=﹣0.25,
∴所求回归直线方程为=0.85x﹣0.25…
(2)由(1)知,x=100时,
=0.85×100﹣0.25=84.75吨,…
预测生产100吨甲产品的生产能耗为84.75吨,
比技改前节约了90﹣84.75=5.25吨标准煤.…
22.已知圆C:x2+y2﹣2x+4y﹣4=0,直线l的斜率为1,与圆交于A、B两点.
(1)若直线l经过圆C的圆心,求出直线的方程;
(2)当直线l平行移动的时候,求△CAB面积的最大值以及此时直线l的方程;
(3)是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程,若不存在,说明理由.
【考点】直线与圆的位置关系.
【分析】(1)圆C的圆心C(1,﹣2),半径为3,直线斜率为1,由此能求出直线l的方程.
(2)设直线l的方程为:y=x+m,圆心C到直线l的距离为d,则|AB|=2,≤,当且仅当时取等号,由此能求出直线l的方程.
(3)假设存在直线l:y=x+m满足题设要求,点A(x1,y1),B(x2,y2),以AB为直径的圆过原点,得x1x2+y1y2=0,联立,得2x2+2(m+1)x+m2+4m﹣4=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在直线l,使以线段AB为直径的圆过原点,并能求出其方程.
【解答】解:(1)圆C的标准方程为:(x﹣1)2+(y+2)2=9,所以圆心C(1,﹣2),半径为3;
又直线斜率为1,所以直线l的方程为y+2=x﹣1,即x﹣y﹣3=0.…
(2)设直线l的方程为:y=x+m,圆心C到直线l的距离为d,则|AB|=2,
=≤,
当且仅当,d=时取等号,由d==,得m=0或m=﹣6,
所以直线l的方程为y=x或y=x﹣6…
(3)假设存在直线l:y=x+m满足题设要求,点A(x1,y1),B(x2,y2),
以AB为直径的圆过原点,所以OA⊥OB,有=﹣1,即x1x2+y1y2=0,﹣﹣﹣﹣﹣﹣①
联立,得2x2+2(m+1)x+m2+4m﹣4=0,
由于△>0,得﹣3﹣3<m<3,
x1+x2=﹣(m+1),,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②
所以,﹣﹣﹣﹣﹣﹣﹣﹣③
由①②③解得m=1或m=﹣4,均符合△>0,
故存在直线l,使以线段AB为直径的圆过原点,其方程为y=x+1或y=x﹣4.…