• 206.50 KB
  • 2021-06-12 发布

数学文卷·2018届湖南省师大附中高三月考试卷(六)(2018

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
湖南师大附中2018届高三月考试卷(六)‎ 数 学(文科) ‎ 命题人、审题人:彭萍 苏萍 曾克平 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。时量120分钟。满分150分。‎ 第Ⅰ卷 一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎                              ‎ ‎(1)复数z=1+i,为z的共轭复数,则z+z-3=(C)‎ ‎(A)-2i (B)-i (C)i (D)2i ‎(2)若a,b为实数,则“01 000的最小n值是(C)‎ ‎(A)5 (B)6 (C)7 (D)8‎ ‎【解析】因为a1=1,log3an+1=log3an+1 (n∈N*),所以an+1=3an,Sn=,则满足Sn>1000的最小n值是7.‎ ‎(7)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为(C)‎ ‎(A)2 (B)2 (C)4 (D)2 ‎【解析】设长方体长、宽、高分别为m、n、x.由已知,m2+n2+x2=7,m2+x2=6‎ 得n=1,又x2+1=a2,m2+1=b2,所以:(a+b)2=a2+b2+2ab=x2+m2+2n2+2ab=8+2ab≤8+2,由此解得:a+b≤4,当且仅当a=b时取“=”.故a+b的最大值为4.‎ ‎(8)已知函数f(x)=Acos ωx(A>0,ω>0)的最小正周期为2,且f=1,则函数y=f(x)的图象向右平移个单位后所得图象的函数解析式为(A)‎ ‎(A)y=2sin πx (B)y=sin πx ‎(C)y=2cos πx (D)y=cos πx ‎【解析】由最小正周期为2,得=2,则ω=π,又f=1,所以Acos=1,A=2,所以f(x)=2cos πx,将函数y=f(x)的图象向右平移个单位后得到y=2cos=2cos=2sin πx的图象.‎ ‎(9)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若△AOB的面积为 ,则直线AB的斜率为(C)‎ ‎(A)2 (B)-2 (C)±2 (D) ‎【解析】设直线AB的倾斜角为α,由S△ABC==得sin α=,所以tan α=±2.‎ ‎(10)若函数f(x)=x3+x2-在区间(a,a+4)上存在最大值,则实数a的取值范围是(C)‎ ‎(A)(-6,-2) (B)(-6,3)‎ ‎(C)(-6,-3] (D)(-6,-2]‎ ‎【解析】函数f(x)=x3+x2-在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数.‎ 令f(x)=f(-2)=,得x=-2或x=1.结合图像可知:‎ 解得a∈(-6,-3].‎ ‎(11)已知函数f(x)=,则函数g(x)=f[f(x)+1]的零点个数是(D)‎ ‎(A)1个 (B)2个 (C)3个 (D)4个 ‎【解析】设f(M)=0,得M=2或M=-1.当M=-1时,‎ 由f(x)+1=-1得log2(-x)=-2或x-2=-2,‎ 即得x=0或x=-;当M=2时,由f(x)+1=2得f(x)=1,‎ 即log2(-x)=1或x-2=1,即x=-2或x=3.‎ ‎(12)在平面直角坐标系xOy中,A、B为不等式组所表示的区域上任意两个动点, M的坐标为(3,1),则·的最大值为(B)‎ ‎(A)2 (B)3 (C)4 (D)5‎ ‎【解析】设A(x1,y1),B(x2,y2),‎ ·=(-)·=(3x2+y2)-(3x1+y1),‎ 由于A、B为不等式组所表示的区域上任意两个动点,‎ 故要求·的最大值即求目标函数z=3x+y的最大值与最小值的差,作出不等式所表示的平面区域如图,可知目标函数最大值和最小值分别为6和3,·的最大值为3.‎ 选择题答题卡 题 号 ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎(4)‎ ‎(5)‎ ‎(6)‎ ‎(7)‎ ‎(8)‎ ‎(9)‎ ‎(10)‎ ‎(11)‎ ‎(12)‎ 答 案 C A A D C C C A C C D B 第Ⅱ卷 本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.‎ 二、填空题:本题共4小题,每小题5分.‎ ‎(13)已知集合A={3,a2},B={0,b,1-a},且A∩B={1},则A∪B=__{0,1,2,3}__.‎ ‎【解析】∵A={3,a2},集合B={0,b,1-a},且A∩B={1},‎ ‎∴a2=1,解得:a=1或a=-1,‎ 当a=1时,1-a=1-1=0,不合题意,舍去;‎ 当a=-1时,1-a=1-(-1)=2,此时b=1,‎ ‎∴A={3,1},集合B={0,1,2},‎ 则A∪B={0,1,2,3}.‎ 故答案为:{0,1,2,3}.‎ ‎(14)已知正实数x,y满足xy+2x+y=4,则x+y的最小值为__2-3__.‎ ‎【解析】∵正实数x,y满足xy+2x+y=4,‎ ‎∴y=(0<x<2).‎ ‎∴x+y=x+=x+=(x+1)+-3≥2-3=2-3,‎ 当且仅当x=-1时取等号.‎ ‎∴x+y的最小值为2-3.‎ 故答案为:2-3.‎ ‎(15)折纸已经成为开发少年儿童智力的一大重要工具和手段.已知在折叠“爱心”的过程中会产生如图所示的几何图形,其中四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为____.‎ ‎【解析】设正方形ABCD的边长为2,则由题意,多边形AEFGHID的面积为5+5+×2×2=12,‎ 阴影部分的面积为2×2××2=4,‎ ‎∴向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为=,故答案为.‎ ‎(16)函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA、kB,规定φ(A,B)=叫做曲线y=f(x)在点A、B之间的“平方弯曲度”.设曲线y=ex+x上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,则φ(A,B)的取值范围是____.‎ ‎【解析】y=ex+x的导数为y′=ex+1,‎ kA=ex1+1,kB=ex2+1,‎ φ(A,B)===,‎ x1-x2=1,可得x1>x2,ex1>ex2,‎ 可令t=ex1-ex2,‎ 可设f(t)=,t>0,‎ f′(t)==,‎ 当0<t<时,f′(t)>0,f(t)递增;‎ 当t>时,f′(t)<0,f(t)递减.‎ 则当t=处f(t)取得极大值,且为最大值=.‎ 则φ(A,B)∈.‎ 故答案为:.‎ 三、解答题:解答应写出文字说明,证明过程或演算步骤.‎ ‎(17)(本小题满分12分)‎ 已知数列{an}中,a1=2,且2an=an-1+1(n≥2,n∈N+).‎ ‎(Ⅰ)求证:数列{an-1}是等比数列,并求出数列{an}的通项公式;‎ ‎(Ⅱ)设bn=n(an-1),数列{bn}的前n项和为Sn,求证:1≤Sn<4.‎ ‎【解析】(Ⅰ)an-1=-1=(an-1-1), 2分 又a1-1=1≠0,‎ ‎∴数列{an-1}是首项为1,公比为的等比数列. 4分 ‎∴an-1=,得an=+1.5分 ‎(Ⅱ)bn=n(an-1)=n,‎ 设Sn=1++++…++  ①‎ 则Sn=++++…++ ②8分 ‎①-②得:Sn=1+++++…+-=2--,‎ ‎∴Sn=4--=4-,10分 Sn=4-<4,又bn=n>0,‎ ‎∴数列{Sn}是递增数列,故Sn≥S1=1,‎ ‎∴1≤Sn<4. 12分 ‎(18)(本小题满分12分)‎ 如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.‎ ‎(Ⅰ)证明:AE⊥平面PAD;‎ ‎(Ⅱ)取AB=2,在线段PD上是否存在点H,使得EH与平面PAD所成最大角的正切值为,若存在,请求出H点的位置,若不存在,请说明理由.‎ ‎【解析】(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形,‎ ‎∵E为BC的中点,∴AE⊥BC.‎ 又BC∥AD,因此AE⊥AD.‎ ‎∵PA⊥平面ABCD,AE平面ABCD,‎ ‎∴PA⊥AE.‎ 而PA平面PAD,AD平面PAD,PA∩AD=A,‎ ‎∴AE⊥平面PAD; 4分 ‎(Ⅱ)设线段PD上存在一点H,连接AH,EH.‎ 由(Ⅰ)知AE⊥平面PAD,‎ 则∠EHA为EH与平面PAD所成的角. 6分 在Rt△EAH中,AE=,‎ ‎∴当AH最短时,即当AH⊥PD时,∠EHA最大,‎ 此时tan∠EHA===,因此AH=. 10分 ‎∴线段PD上存在点H,‎ 当DH=时,使得EH与平面PAD所成最大角的正切值为. 12分 ‎(19)(本小题满分12分)‎ 如图,在△ABC中,M是边BC的中点,cos∠BAM=,‎ tan∠AMC=-.‎ ‎(Ⅰ)求角B的大小;‎ ‎(Ⅱ)若角∠BAC=,BC边上的中线AM的长为,求△ABC的面积.‎ ‎【解析】(Ⅰ)由cos∠BAM=,‎ 得:sin∠BAM=,‎ ‎∴tan∠BAM=. 2分 又∠AMC=∠BAM+∠B,‎ ‎∴tan B=tan(∠AMC-∠BAM)===-;5分 又B∈(0,π),‎ ‎∴B=.6分 ‎(Ⅱ)由(Ⅰ)知B=.角∠BAC=,‎ ‎∴C=.‎ 则AB=BC.8分 设MB=x,‎ 则AB=2x.‎ 在△ABM中由余弦定理,得AM2=AB2+MB2-2AB·BMcos B,10分 即7x2=21.‎ 解得:x=.‎ 故得△ABC的面积S△ABC=×4x2×sin=3. 12分 ‎(20)(本小题满分12分)‎ 已知椭圆C:+=1(a>b>0)的离心率为,连接椭圆四个顶点的四边形面积为2.‎ ‎(Ⅰ)求椭圆C的方程;‎ ‎(Ⅱ)A、B是椭圆的左右顶点,P是椭圆上任意一点,椭圆在P点处的切线与过A、B且与x轴垂直的直线分别交于C、D两点,直线AD、BC交于Q,是否存在实数λ,使xP=λxQ恒成立,并说明理由.‎ ‎【解析】(Ⅰ)由题意e==,2ab=2 解得a=,b=,故椭圆C的方程为+=15分 ‎(Ⅱ)设切线方程为y=kx+m,‎ 与椭圆联立消元得x2+6kmx+3m2-6=0‎ ‎∵直线与椭圆相切,∴Δ=36k2m2-4=0‎ 化简得m2=2+3k2,7分 且xP=-=-,8分 又点A(-,0),D(,k+m),‎ 直线AD方程为y=9分 同理直线BC方程为y=10分 解得xQ=-11分 ‎∴存在λ=1,使xP=λxQ恒成立.12分 ‎(21)(本小题满分12分)‎ 已知函数f=.‎ ‎(Ⅰ)求函数f的极值点;‎ ‎(Ⅱ)设g=,若函数g在∪内有两个极值点x1、x2,求证:g·g<.‎ ‎【解析】(Ⅰ)f′==,1分 ‎①若00,可得02,即函数f在,上为增函数;由f′<0,可得a2,由f′=0得x=2,x=a;由f′>0可得x<2或x>a,所以函数f在,上为增函数;由f′<0,可得22.9分 gg== ‎==.11分 ‎∵a>2,‎ ‎∴gg=<.12分 请考生在第(22)~(23)两题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.‎ ‎(22)(本小题满分10分)选修4-4:坐标系与参数方程 在极坐标系中,曲线C:ρ=2acos θ(a>0),l:ρcos=,C与l有且仅有一个公共点 ‎.‎ ‎(Ⅰ)求a;‎ ‎(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求+的最大值.‎ ‎【解析】(Ⅰ)由ρcos θ=x,ρsin θ=y,ρ2=x2+y2可将曲线C、直线l的极坐标方程化为直角坐标方程分别为+y2=a2,l的方程为:x+y-3=0,‎ 由已知得=aa=1.5分 ‎(Ⅱ)因为曲线C为圆,由圆的对称性,设∠AOx=θ,θ∈,‎ 则+=ρ+ρ=2cos θ+2cos,‎ ‎3cos θ+sin θ=2sin≤2,‎ 所以当θ=时,+的最大值为2.10分 ‎(23)(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=+, ‎ ‎(Ⅰ)解不等式f(x)≤9;‎ ‎(Ⅱ)若不等式f(x)<2x+a的解集为A,B=,且满足BA,求实数a的取值范围.‎ ‎【解析】(Ⅰ)f(x)≤9可化为+≤9‎ ,或,或;2分 ‎2