- 60.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010~2014年高考真题备选题库
第6章 不等式、推理与证明
第5节 合理推理与演绎推理
1.(2014北京,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )
A.2人 B.3人
C.4人 D.5人
解析: 学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.
答案:B
2.(2014福建,5分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.
解析:因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上,符合条件的有序数组的个数是6.
答案:6
3.(2014陕西,5分)观察分析下表中的数据:
多面体
面数(F)
顶点数(V)
棱数(E)
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
猜想一般凸多面体中F,V,E所满足的等式是________.
解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.
答案:F+V-E=2
4.(2013陕西,5分)观察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10
……
照此规律,第n个等式可为________.
解析:本题考查考生的观察、归纳、推理能力.观察规律可知,第n个式子为12-22+32-42+…+(-1)n+1n2=(-1)n+1.
答案:12-22+32-42+…+(-1)n+1n2=(-1)n+1
5.(2013陕西,5分)观察下列等式
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5
…
照此规律, 第n个等式可为________.
解析:本题主要考查归纳推理,考查考生的观察、归纳、猜测能力.观察规律可知,左边为n项的积,最小项和最大项依次为(n+1),(n+n),右边为连续奇数之积乘以2n,则第n个等式为:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1).
答案:(n+1)(n+2)(n+3)…(n+n)=2n×1×3×5×…×(2n-1)
6.(2013湖北,5分)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数 N(n,3)=n2+n,
正方形数 N(n,4)=n2,
五边形数 N(n,5)=n2-n,
六边形数 N(n,6)=2n2-n,
……
可以推测N(n,k)的表达式,由此计算N(10,24)=________.
解析:本题主要考查数列的相关知识,意在考查考生对等差数列的定义、通项公式的掌握程度.
N(n,k)=akn2+bkn(k≥3),其中数列{ak}是以为首项,为公差的等差数列;数列{bk}是以为首项,-为公差的等差数列;所以N(n,24)=11n2-10n,当n=10时,N(10,24)=11×102-10×10=1 000.
答案:1 000
7.(2012江西,5分)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )
A.28 B.76
C.123 D.199
解析:记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.
答案:C
8.(2012湖北,5分)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则
(1)4位回文数有________个;
(2)2n+1(n∈N+)位回文数有________个.
解析:2位回文数有9个,4位回文数有9×10=90个,3位回文数有90个,5位回文数有9×10×10=100×9个,依次类推可得2n+1位有9×10n个.
答案:90 9×10n
9.(2011陕西,5分)观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为________.
解析:每行最左侧数分别为1、2、3、…,所以第n行最左侧的数应为n;每行数的个数分别为1、3、5、…,所以第n行的个数应为2n-1.所以第5行数依次是5、6、7、…、13,其和为5+6+7+…+13=81.
答案:5+6+7+…+13=81
10.(2010浙江,4分)设n≥2,n∈N,(2x+)n-(3x+)n=a0+a1x+a2x2+…+anxn,将|
ak|(0≤k≤n)的最小值记为Tn,则T2=0,T3=-,T4=0,T5=-,…,Tn,…其中Tn=________.
解析:根据已知条件,总结规律,进而可得.
答案:
11.(2010陕西,5分)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.
解析:观察等式发现等式左边各加数的底数之和等于右边的底数,右边数的指数均为2,故猜想第五个等式应为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.
答案:13+23+33+43+53+63=212