• 896.00 KB
  • 2021-06-15 发布

2018-2019学年四川省遂宁市射洪中学高二下学期期末模拟数学(文) Word版

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
四川省遂宁市射洪中学2018-2019学年高二下学期期末模拟 文科数学试题 第I卷(共60分)‎ 一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 请将其编号选出,并涂在机读卡上的相应位置)‎ ‎1.已知复数(为虚数单位),则=‎ A. 3 B. 2 C. D. ‎ ‎2.已知命题,则为 A. B. ‎ C. D. ‎ ‎3.运行下列程序,若输入的的值分别为,则输出的的值为 A. B. C. D. ‎ ‎4.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为 x ‎2‎ ‎4‎ ‎5‎ ‎6‎ ‎8‎ y ‎25‎ ‎35‎ ‎60‎ ‎55‎ ‎75‎ A. 5 B. 10 C. 12 D. 20‎ ‎5.设、是两条不同的直线,、是两个不同的平面,下列命题中正确的是 A. 若,且,则 B. 若,则 C. 若,,则 D. 若,且,则 ‎6.已知函数,则函数的大致图象是 A. B. C. D. ‎ ‎7.“”是“函数在内存在零点”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 ‎8.若曲线与曲线在它们的公共点处具有公共切线,则实数的值为 ‎ A. B. C. D. ‎ ‎9.已知函数,给出下列四个结论:‎ ‎① 函数的最小正周期是;② 函数在区间上是减函数;‎ ‎③ 函数的图像关于点对称;‎ ‎④ 函数的图像可由函数的图像向右平移个单位,再向下平移1个单位得到.‎ 其中正确结论的个数是 A. 1 B. 2 C. 3 D. 4‎ ‎10.若函数在上有最大值无最小值,则实数的取值范围为 A. B. C. D. ‎ ‎11.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为 A. B. C. D. ‎ ‎12. 设函数在上存在导数,对任意的, 有,且时,.若,则实数的取值范围为 ‎ A. B. C. D. ‎ 第Ⅱ卷(共90分)‎ 二.填空题(本大题共4小题,每小题5分,共20分)‎ ‎13.已知向量,若,则 .‎ ‎14.命题:,使得成立;命题,不等式恒成立.若命题为真,则实数的取值范围为___________.‎ ‎15.若,则的值是  ‎ ‎16.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为__________.‎ 三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎17.(12分)已知函数 ‎(Ⅰ)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值;‎ ‎(2)若函数有三个不同零点,求的取值范围.‎ ‎18.(12分)“微信运动”是手机APP推出的多款健康运动软件中的一款,大学生M的微信好友中有位好友参与了 “微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:、步,(说明:“”表示大于或等于,小于,以下同理),、步,、步,、步,、步,且、、三种类别的人数比例为1∶4∶3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.‎ E C O B A 类别 ‎ 人数 D ‎1‎ ‎.‎ ‎.‎ ‎.‎ ‎.‎ ‎.‎ ‎.‎ ‎.‎ ‎.‎ ‎3‎ ‎0.200‎ ‎12‎ ‎6‎ O ‎4‎ ‎2‎ 步数(千步)‎ ‎ 频率/组距 ‎0.075‎ ‎10‎ ‎8‎ ‎0.150‎ ‎0.025‎ ‎0.050‎ ‎(Ⅰ)若以大学生M抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M的参与“微信运动”的位微信好友中,每天走路步数在的人数; ‎ ‎(Ⅱ)若在大学生M该天抽取的步数在的微信好友中,按男女比例分层抽取人进行身体状况调查,然后再从这位微信好友中随机抽取人进行采访,求其中至少有一位女性微信好友被采访的概率.‎ ‎19.(12分)如图,平面平面,其中为矩形,为直角梯形,,,.‎ ‎(Ⅰ)求证:平面平面;‎ ‎(Ⅱ)若三棱锥体积为,求与面BAF所成角的正弦值.‎ ‎20.(12分)已知椭圆经过点,一个焦点的坐标为.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)设直线与椭圆交于两点,为坐标原点,若,求的取值范围.‎ ‎21.(12分)已知函数.‎ ‎(Ⅰ)当时,恒成立,求的值; ‎ ‎(Ⅱ)若恒成立,求的最小值.‎ 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.‎ ‎22.(选修4-4:坐标系与参数方程)(10分)‎ 在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线的极坐标方程为.‎ ‎(Ⅰ)求直线与曲线的直角坐标方程;‎ ‎(Ⅱ)设点,直线与曲线交于不同的两点,求的值.‎ ‎23.(本小题满分10分)选修4-5:不等式选讲 已知函数的最小值为.‎ ‎(Ⅰ)求实数的值;‎ ‎(Ⅱ)若均为正实数,且满足,求证: .‎ 高二期末模拟考试 文科数学试题答案 一.选择题 ‎1.D 2.C 3.B 4.B 5.C 6.A 7.A 8.A 9.B 10.C 11.C 12.A 二.填空题 ‎13. 14. 15. 16..‎ 三.解答题 ‎17.(1)因为 所以函数的单调减区间为 又 由 ‎ ‎,,‎ ‎18.解:(Ⅰ)所抽取的40人中,该天行走步的人数:男12人,‎ 女14人……2分,‎ 位参与“微信运动”的微信好友中,每天行走步的人数 约为:人……4分;‎ ‎(Ⅱ)该天抽取的步数在的人数:男6人,女3人,共9人,‎ 再按男女比例分层抽取6人,则其中男4人,女2人. ……6分 列出6选2的所有情况15种……8分,至少1个女性有9种……10分 ,‎ 设“其中至少有一位女性微信好友被采访”为事件A,‎ 则所求概率 ……12分 ‎19:(Ⅰ)证明:作 ‎,.‎ ‎,‎ ‎.‎ ‎,AD为两个面的交线 ‎.‎ ‎……………………6分 ‎ ‎ ‎(Ⅱ)因为平面ABCD⊥平面ADEF,AB⊥AD,‎ 所以AB⊥平面ADEF,‎ 所以|AB|=1, ‎ ‎ 连接BH,易知为线与面BAF所成的角,……………………10分 ‎ 在直角△BDH中, ‎ ‎ ‎ 所以与面BAF所成角的正弦值为.……………………12分 ‎20.解:(1) ‎ ‎ ‎ ‎(2)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎21.21. 解:(1)由,得,则.‎ ‎∴.‎ ① ‎ 若,则,在上递增.‎ 又,∴.当时,不符合题意.‎ ‎② 若,则当时,,递增;当时,,递减.‎ ‎∴当时,.‎ 欲使恒成立,则需 记,则.‎ ‎∴当时,,递减;当时,,递增.‎ ‎∴当时,‎ 综上所述,满足题意的.‎ ‎(2)由(1)知,欲使恒成立,则.‎ 而恒成立恒成立函数的图象不在函数图象的上方,‎ 又需使得的值最小,则需使直线与曲线的图象相切.‎ 设切点为,则切线方程为,即..‎ ‎∴ .‎ 令,则.‎ ‎∴当时,,递减;当时,,递增.‎ ‎∴.‎ 故的最小值为0.‎ ‎22(1);‎ ‎(2)考虑直线方程,则其参数方程为(为参数),‎ 代入曲线方程有:,‎ 则有.‎ ‎23.(1)因为函数,‎ 所以当时, ;当时, ;‎ 当时, ,综上, 的最小值.‎ ‎(2)据(1)求解知,所以,又因为,所以 ‎,‎ 即,当且仅当时,取“=” 所以,即.‎

相关文档