- 482.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础题组练]
1.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.则异面直线B1C与AA1所成的角的大小为( )
A. B.
C. D.
解析:选B.以O为坐标原点建系如图,则A(0,1,0),A1(0,1,1),B1,C.
所以=(0,0,1),=(0,-1,-1),
所以cos〈,〉=
==-,
所以〈,〉=,
所以异面直线B1C与AA1所成的角为.故选B.
2.如图,已知长方体ABCDA1B1C1D1中,AD=AA1=1,AB=3,E为线段AB上一点,且AE=AB,则DC1与平面D1EC所成的角的正弦值为( )
A. B.
C. D.
解析:选A.如图,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C1(0,3,1),D1(0,0,1),E(1,1,0),C(0,3,0),所以=(0,3,1),=(1,1,-1),=(0,3,-1).
设平面D1EC的法向量为n=(x,y,z),
则即即取y=1,得n=(2,1,3).
因为cos〈,n〉===,所以DC1与平面D1EC所成的角的正弦值为,故选A.
3.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2.则该二面角的大小为( )
A.150° B.45° C.60° D.120°
解析:选C.如图所示,二面角的大小就是〈,〉.
因为=++,
所以2=2+2+2+2(·+·+·)
=2+2+2+2·,
所以·=[(2)2-62-42-82]=-24.
因此·=24,cos〈,〉==,
又〈,〉∈[0°,180°],
所以〈,〉=60°,故二面角为60°.
4.如图,正三棱柱ABCA1B1C1的所有棱长都相等,E,F,G分别为AB,AA1,A1C1
的中点,则B1F与平面GEF所成角的正弦值为________.
解析:
设正三棱柱的棱长为2,取AC的中点D,连接DG,DB,分别以DA,DB,DG所在的直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,
则B1(0,,2),F(1,0,1),
E,G(0,0,2),
=(1,-,-1),=,=(1,0,-1).
设平面GEF的法向量为n=(x,y,z),
则即
取x=1,则z=1,y=,
故n=(1,,1)为平面GEF的一个法向量,
所以|cos〈n,〉|==,
所以B1F与平面GEF所成角的正弦值为.
答案:
5.如图所示,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成角的余弦值的大小.
解:(1)证明:因为四边形ABCD是菱形,
所以BD⊥AC.
因为AE⊥平面ABCD,BD⊂平面ABCD,
所以BD⊥AE.
又因为AC∩AE=A,AC,AE⊂平面ACFE.
所以BD⊥平面ACFE.
(2)
以O为原点,OA,OB所在直线分别为x轴,y轴,过点O且平行于CF的直线为z轴(向上为正方向),建立空间直角坐标系,则B(0,,0),D(0,-,0),E(1,0,2),F(-1,0,a)(a>0),=(-1,0,a).
设平面EBD的法向量为n=(x,y,z),
则有即
令z=1,则n=(-2,0,1),
由题意得sin 45°=|cos〈,n〉|=
==,
解得a=3或a=-(舍去).
所以=(-1,0,3),=(1,-,2),
cos〈,〉==,
故异面直线OF与BE所成角的余弦值为.
6.(2020·湖北十堰4月调研)如图,在三棱锥P-ABC中,M为AC的中点,PA⊥PC,AB⊥BC,AB=BC,PB=,AC=2,∠PAC=30°.
(1)证明:BM⊥平面PAC;
(2)求二面角B-PA-C的余弦值.
解:(1)证明:因为PA⊥PC,AB⊥BC,所以MP=MB=AC=1,
又MP2+MB2=BP2,所以MP⊥MB.
因为AB=BC,M为AC的中点,所以BM⊥AC,
又AC∩MP=M,所以BM⊥平面PAC.
(2)法一:取MC的中点O,连接PO,取BC的中点E,连接EO,则OE∥BM,从而OE⊥AC.
因为PA⊥PC,∠PAC=30°,所以MP=MC=PC=1.
又O为MC的中点,所以PO⊥AC.
由(1)知BM⊥平面PAC,OP平面PAC,所以BM⊥PO.
又BM∩AC=M,所以PO⊥平面ABC.
以O为坐标原点,OA,OE,OP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示,
由题意知A,B,P,=,=(1,-1,0),
设平面APB的法向量为n=(x,y,z),则
令x=1,得n=(1,1,)为平面APB的一个法向量,
易得平面PAC的一个法向量为π=(0,1,0),cos〈n,π〉=,
由图知二面角B-PA-C为锐角,
所以二面角B-PA-C的余弦值为.
法二:取PA的中点H,连接HM,HB,
因为M为AC的中点,所以HM∥PC,又PA⊥PC,所以HM⊥PA.
由(1)知BM⊥平面PAC,则BH⊥PA,
所以∠BHM为二面角B-PA-C的平面角.
因为AC=2,PA⊥PC,∠PAC=30°,所以HM=PC=.
又BM=1,则BH==,
所以cos∠BHM==,即二面角B-PA-C的余弦值为.
7.(2020·合肥模拟)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.
(1)求证:平面BDM∥平面EFC;
(2)若DE=2AB,求直线AE与平面BDM所成角的正弦值.
解:(1)证明:连接AC,交BD于点N,连接MN,
则N为AC的中点,
又M为AE的中点,所以MN∥EC.
因为MN平面EFC,EC平面EFC,
所以MN∥平面EFC.
因为BF,DE都垂直底面ABCD,所以BF∥DE.
因为BF=DE,
所以四边形BDEF为平行四边形,
所以BD∥EF.
因为BD平面EFC,EF平面EFC,
所以BD∥平面EFC.
又MN∩BD=N,所以平面BDM∥平面EFC.
(2)因为DE⊥平面ABCD,四边形ABCD是正方形,
所以DA,DC,DE两两垂直,如图,建立空间直角坐标系.
设AB=2,则DE=4,从而D(0,0,0),B(2,2,0),M(1,0,2),A(2,0,0),E(0,0,4),
所以=(2,2,0),=(1,0,2),
设平面BDM的法向量为n=(x,y,z),
则得
令x=2,则y=-2,z=-1,从而n=(2,-2,-1)为平面BDM的一个法向量.
因为=(-2,0,4),设直线AE与平面BDM所成的角为θ,则
sin θ=|cos〈n·〉|==,
所以直线AE与平面BDM所成角的正弦值为.
[综合题组练]
1.(2020·河南联考)如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,△PAD是边长为4的等边三角形,BC⊥PB,E是AD的中点.
(1)求证:BE⊥PD;
(2)若直线AB与平面PAD所成角的正弦值为,求平面PAD与平面PBC所成的锐二面角的余弦值.
解:(1)证明:因为△PAD是等边三角形,E是AD的中点,所以PE⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE平面PAD,
所以PE⊥平面ABCD,所以PE⊥BC,PE⊥BE.
又BC⊥PB,PB∩PE=P,所以BC⊥平面PBE,所以BC⊥BE.
又BC∥AD,所以AD⊥BE.
又AD∩PE=E且AD,PE平面PAD,所以BE⊥平面PAD,所以BE⊥PD.
(2)由(1)得BE⊥平面PAD,所以∠BAE就是直线AB与平面PAD所成的角.
因为直线AB与平面PAD所成角的正弦值为,
即sin∠BAE= ,所以cos∠BAE=.
所以cos∠BAE===,解得AB=8,则BE==2.
由(1)得EA,EB,EP两两垂直,所以以E为坐标原点,EA,EB,EP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,
则点P(0,0,2),A(2,0,0),D(-2,0,0),B(0,2,0),C(-4,2,0),
所以=(0,2,-2),=(-4,2,-2).
设平面PBC的法向量为m=(x,y,z),
由得
解得
令y=1,可得平面PBC的一个法向量为m=(0,1,).
易知平面PAD的一个法向量为n=(0,1,0),
设平面PAD与平面PBC所成的锐二面角的大小为θ,
则cos θ===.
所以平面PAD与平面PBC所成的锐二面角的余弦值为.
2.(2020·河南郑州三测)如图①,△ABC中,AB=BC=2,∠ABC=90°,E,F分别为边AB,AC的中点,以EF为折痕把△AEF折起,使点A到达点P的位置(如图②),且PB=BE.
(1)证明:EF⊥平面PBE;
(2)设N为线段PF上的动点(包含端点),求直线BN与平面PCF所成角的正弦值的最大值.
解:(1)证明:因为E,F分别为边AB,AC的中点,所以EF∥BC.
因为∠ABC=90°,所以EF⊥BE,EF⊥PE,又BE∩PE=E,所以EF⊥平面PBE.
(2)取BE的中点O,连接PO,因为PB=BE=PE,所以PO⊥BE.
由(1)知EF⊥平面PBE,EF平面BCFE,所以平面PBE⊥平面BCFE.
又PO⊂平面PBE,平面PBE∩平面BCFE=BE,所以PO⊥平面BCFE.
过点O作OM∥BC交CF于点M,分别以OB,OM,OP所在的直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,
则B,P,C,
F,=,
=,
由N为线段PF上一动点,得=λ(0≤λ≤1),
则可得N,
=.
设平面PCF的法向量为m=(x,y,z),
则即取y=1,则x=-1,z=,所以m=(-1,1,)为平面PCF的一个法向量.
设直线BN与平面PCF所成的角为θ,
则sin θ=|cos〈,m〉|===≤=(当且仅当λ=时取等号),
所以直线BN与平面PCF所成角的正弦值的最大值为.
3.(2020·山东淄博三模)如图①,已知正方形ABCD的边长为4,E,F分别为AD,BC的中点,将正方形ABCD沿EF折成如图②所示的二面角,且二面角的大小为60°,点M在线段AB上(包含端点),连接AD.
(1)若M为AB的中点,直线MF与平面ADE的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;
(2)是否存在点M,使得直线DE与平面EMC所成的角为60°?若存在,求此时二面角MECF的余弦值;若不存在,说明理由.
解:(1)因为直线MF平面ABFE,故点O在平面ABFE内,也在平面ADE内,
所以点O在平面ABFE与平面ADE的交线(即直线AE)上(如图所示).
因为AO∥BF,M为AB的中点,
所以△OAM≌△FBM,
所以OM=MF,AO=BF,所以AO=2.
故点O在EA的延长线上且与点A间的距离为2.
连接DF,交EC于点N,因为四边形CDEF为矩形,
所以N是EC的中点.
连接MN,则MN为△DOF的中位线,所以MN∥OD,
又MN平面EMC,OD 平面EMC,所以直线OD∥平面EMC.
(2)由已知可得EF⊥AE,EF⊥DE,又AE∩DE=E,所以EF⊥平面ADE.
所以平面ABFE⊥平面ADE,易知△ADE为等边三角形,取AE的中点H,则易得DH⊥平面ABFE,以H为坐标原点,建立如图所示的空间直角坐标系,
则E(-1,0,0),D(0,0,),C(0,4,),F(-1,4,0),所以=(1,0,),=(1,4,).
设M(1,t,0)(0≤t≤4),则=(2,t,0),
设平面EMC的法向量为m=(x,y,z),则⇒
取y=-2,则x=t,z=,所以m=为平面EMC的一个法向量.
要使直线DE与平面EMC所成的角为60°,则=,所以=,整理得t2-4t+3=0,
解得t=1或t=3,
所以存在点M,使得直线DE与平面EMC所成的角为60°,
取ED的中点Q,连接QA,则为平面CEF的法向量,
易得Q,A(1,0,0),所以=.
设二面角M-EC-F的大小为θ,
则|cos θ|===.
因为当t=2时,cos θ=0,平面EMC⊥平面CDEF,
所以当t=1时,cos θ=-,θ为钝角;当t=3时,cos θ=,θ为锐角.
综上,二面角M-EC-F的余弦值为±.