- 784.91 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
试卷第 1 页,总 20 页
2019 年 福 州 市 普 通 高 中 毕 业 班 质 量 检测
理科数学
第 Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.设复数 z 满足i 1 iz ,则 z 的共轭复数为( )
A. 1 i B.1 i C. 1 i D.1 i
解析:因为 1 i 1 iiz ,所以 1+iz ,故选 A.
2.已知集合 22 1 3 , 2 0A x x B x x x ,则 A B =( )
A.{ |1 2}x x B.{ | 1 1}x x
C.{ | }2 1, 1x xx 或 D.{ | 1}x x
解析:因为 1 , 1 2A x x B x x ,所以 1A B x x ,故选 D.
3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族
传统文化,某校学生会为了解本校高一 1000 名学生的课余时间参加传统文化活动的情况,随机抽取 50 名
学生进行调查.将数据分组整理后,列表如下:
参加场数 0 1 2 3 4 5 6 7
参加人数占调查人数的百分比 8% 10% 20% 26% 18% m% 4% 2%
以下四个结论中正确的是( )
A. 表中 m 的数值为 10
B. 估计该校高一学生参加传统文化活动次数不高于 2 场的学生约为 180 人
C. 估计该校高一学生参加传统文化活动次数不低于 4 场的学生约为 360 人
D. 若采用系统抽样方法进行调查,从该校高一 1000 名学生中抽取容量为 50 的样本,则分段间隔为 25
解析: A 中的 m 值应为 12; B 中应为 380 人; C 是正确的; D 中的分段间隔应为 20,故选 C.
4.等比数列{ }na 的各项均为正实数,其前 n 项和为 nS .若 3 2 64, 64a a a ,则 5S ( )
A.32 B.31 C.64 D.63
解析:解法一:设首项为 1a ,公比为 q ,因为 0na ,所以 0q ,由条件得
2
1
5
1 1
4
64
a q
a q a q
,解得 1 1
2
a
q
,
所以 5 31S ,故选 B.
解法二:设首项为 1a ,公比为 q ,由 2
2 6 4 64a a a ,又 3 4a ,∴ 2q ,又因为 2
1 4a q 所以 1 1a ,
所以 5 31S ,故选 B.
5. 已知sin π 1
6 2
,且 π0, 2
,则
3os πc
( )
试卷第 2 页,总 20 页
A.0 B. 1
2 C.1 D. 3
2
解析:解法一:由 π 1sin 6 2
,且 π0, 2
得, π
3 ,代入 πcos 3
得,
πcos 3
= cos 0 1 ,故选 C.
解法二:由 π 1sin 6 2
,且 π0, 2
得, π 3cos 6 2
,
所以 π π π π π π πcos cos cos cos sin sin 13 6 6 6 6 6 6
,故选 C.
6.设抛物线 2 4y x 的焦点为 F ,准线为l , P 为该抛物线上一点, PA l , A 为垂足.若直线 AF 的
斜率为 3 ,则 PAF△ 的面积为( )
A. 2 3 B. 4 3 C.8 D.8 3
解析:解法一:设准线与 x 轴交于点 Q ,因为直线 AF 的斜率为 3 , 2FQ , 60AFQ ,
4FA ,又因为 PA PF ,所以 PAF△ 是边长为 4 的等边三角形,
所以 PAF△ 的面积为 2 23 3 4 =4 34 4FA .故选 B.
解法二:设准线与 x 轴交于点Q , , )P m n( ,因为直线 AF 的斜率为 3 , 2FQ , 60AFQ ,
所以 2 3AQ ,所以 2 3n ,又因为 2 4n m ,所以 3m ,
又因为 4PA PF , 所以 PAF△ 的面积为 1 1 4 2 3=4 32 2PA n .故选 B.
7.如图,网格纸上的小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )
A.32 B.16 C. 32
3 D. 80
3
第 7 题
试卷第 3 页,总 20 页
解析:由三视图知,所求几何体的体积为直三棱柱的体积减去三棱锥的体积 3 21 1 804 4 2=3 2 3 1
2 .故
选 D.
8.已知函数 ( ) 2sin( )f x x 0,
图象的相邻两条对称轴之间的距离为
,将函数 ( )f x
的图象向左平移
3
个单位长度后,得到函数 ( )g x 的图象.若函数 ( )g x 为偶函数,则函数 ( )f x 在区间
0, 2
上的值域是( )
A. 1 ,12
B.( 1,1) C.(0, 2] D.( 1,2]
解析:由图象的相邻两条对称轴之间的距离为
,所以T ,又因为 0 ,所以 2
,解得 =2 .
0, 2
,将函数 ( )f x 的图象向左平移
3
个单位长度后,得到函数 2( ) 2sin 2 3g x x
的
图象.因为函数 ( )g x 为偶函数,
所以 2 ,3 2k k Z ,由
,解得 = 6 ,所以 ( ) 2sin 2 6f x x
.
因为0 2x ,所以 1 sin 2 12 6x
≤ ,所以函数 ( )f x 在区间 0, 2
上的值域是( 1,2] ,故选 D.
9.已知 ( )g x 为偶函数, ( )h x 为奇函数,且满足 ( ) ( ) 2xg x h x .若存在 [ 1,1]x ,使得不等式
( ) ( ) 0m g x h x ≤ 有解,则实数 m 的最大值为( )
A. 1 B. 3
5 C.1 D. 3
5
解析:由 ( ) ( ) 2xg x h x ,及 ( )g x 为偶函数, ( )h x 为奇函数,得 2 2 2 2( ) , ( )2 2
x x x x
g x h x
- .由
( ) ( ) 0m g x h x ≤
得 2 2 4 1 212 2 4 1 4 1
x x x
x x x xm
-≤ ,∵ 21 4 1xy
为增函数,∴
max
2 31 4 1 5x
,故选 B.
10.如图,双曲线
2 2
2 2 1( 0, 0)x yC a ba b : 的左、右焦点分别为 1 2,F F ,过 2F 作线段 2F P 与C 交于点Q ,
试卷第 4 页,总 20 页
且Q 为 2PF 的中点.若等腰△ 1 2PF F 的底边 2PF 的长等于C 的半焦距,则C 的离心率为( )
A. 2 2 15
7
B. 2
3 C. 2 2 15
7
D. 3
2
解析:连结 1QF ,由条件知 1 2QF PF ,且 2 2
cQF .由双曲线定义知 1 2 2
cQF a ,在 1 2Rt FQF△ 中,
2 2
22 22 2
c ca c
,解得C 的离心率 2 2 15
7e ,故选 C.
11.如图,以棱长为 1 的正方体的顶点 A 为球心,以 2 为半径做一个球面,则该正方体的表面被球面所
截得的所有弧长之和为( )
A. 3
4
B. 2 C. 3
2
D. 9
4
解析:正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以 1A 为圆心,
1为半径的圆周长的 1
4 ,所以弧长之和为 2 33 4 2
.故选 C.
12. 已知数列{ }na 满足 1 1a ,
2
1 2 2
( 1)
2 4
n
n
n n
n aa a na n
,则 8a ( )
A. 64
8
9 2 B. 32
8
9 2 C. 16
8
9 2 D. 7
8
9 2
解析:因为
2
1 2 2
( 1)
2 4
n
n
n n
n aa a na n
,所以
2 2
2
1
2 41
( 1)
n n
n n
a na n
a n a
,
第 10 题图
第 11 题图
试卷第 5 页,总 20 页
所以
22 2
2
1
2 41 4 2n n
n n n n
a na nn n n
a a a a
,
所 以
2
1
1 2 2
n n
n n
a a
, 令 2n
n
nb a , 则 2
1n nb b , 两 边 取 对 数 得 1lg 2lgn nb b , 又
1
1
1lg lg 2 lg3b a
,所以数列 lg nb 是首项为lg 3 ,公比为 2 的等比数列.
所以 11 2lg lg3 2 lg 3 nn
nb ,所以 123 n
nb
,即 1232 n
n
n
a
,从而 123 2nn
na
,将 8n 代入,选
A.
法二、因为 2
1 2 2
1
2 4
n
n
n n
n aa a na n
,所以
2 2
2
1
2 41
1
n n
n n
a na n
a n a
,
所以
22 2
2
1
2 41 4 2n n
n n n n
a na nn n n
a a a a
,
所以
2
1
1 2 2
n n
n n
a a
,令 2n
n
nb a ,则 2
1n nb b ,因为 1 3b ,所以 2
2 3b ,所以 22 4
3 3 3b ,
所以 24 8
4 3 3b ,…,所以 72 64
8 3 9b 。所以 8
8
8 2b a ,所以 8a 64
8
9 2
,故选 A。
第Ⅱ卷
本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22 、23
题为选考题,考生根据要求作答.
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.已知两个单位向量 ,a b
,满足 3a b b
,则 a 与b
的夹角为__________.
解析:因为 ,a b
是单位向量, 3a b b
,
2 2 2 1= 3 2 cos , 2 2cos , 1, cos , , ,2 3
2 a b a a b a b b a b a b a b ( ),
.
14. 已知点 (0, 2)A ,动点 ( , )P x y 的坐标满足条件 0x
y x
≥
≤ ,则 PA 的最小值是 .
解析: PA 的最小值转化成点 A 到直线 y x 的距离 2 2
2
d -= ,
15. 2 5(1 ) (1 )ax x 的展开式中,所有 x 的奇数次幂项的系数和为-64,则正实数 a 的值为__________.
解析:设 2 5 2 3 4 5 6 7
0 1 2 3 4 5 6 7(1 ) (1 )ax x a a x a x a x a x a x a x a x ,
令 1x 得 0 1 2 3 4 5 6 70 a a a a a a a a ①,
试卷第 6 页,总 20 页
令 1x 得 2 5
0 1 2 3 4 5 6 7(1 ) 2a a a a a a a a a ②,
②-①得: 2 5
1 3 5 7(1 ) 2 2( + )a a a a a ,又因为 1 3 5 7+ 64a a a a ,
2 5(1 ) 2 128a ,解得 3 1a a 或 (舍).
16.已知函数
2
e( ) ln(2 ) e
x
f x a x 有且只有一个零点,则实数 a 的取值范围是__________.
解析:解法一:由当 1
2x 时,显然 1
2x 不是该函数的零点;当 1
2x 时,由
2
e( ) ln 2 e 0
x
f x a x ,分离参数得
2
ee
ln 2
x
a x ,令
2
ee( ) ln 2
x
p x x ,
函数
2
e( ) ln 2 e
x
f x a x 有且只有一个零点,等价于直线 y a 与函数
2
ee( ) ln 2
x
p x x 有且只有一个零点。
利用导数,可判断并得出 ( )p x 的图象如图所示,
因为直线 y a 与函数 ( )p x 的图象的交点个数为 1,
由图可知,实数 a 的取值范围是 ( ,0) { }e .
解法二:由
2
e( ) ln 2 e
x
f x a x 得
2
e2( ) ln ee
xxf x a a .令 2 0e
xt t ,
则 ( ) ln etg t a t a .当 1
et 时,
1
e1 e 0eg
,所以 1
et 不是函数 ( )g t 的零点;
当 1
et 时,令 ( ) ln e 0tg t a t a ,分离参数得 e
ln 1
t
a t
,
试卷第 7 页,总 20 页
所以
2
e( ) ln e
x
f x a x a R 的零点个数问题,等价于直线 y a 与函数 e 1( ) 0ln 1 e
t
p t t tt
且
的图象的交点个数的问题.利用导数,可判断并得出 ( )p t 的图象如图所示,
因为直线 y a 与函数 e 1( ) 0ln 1 e
t
p t t tt
且 的图象的交点个数为 1,
由图可知,实数 a 的取值范围是( ,0) { }e .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17. (12 分)
ABC△ 的内角 A , B ,C 的对边分别为 a ,b ,c .若角 A , B ,C 成等差数列,且 3
2b .
(1)求 ABC△ 的外接圆直径;
(2)求 a c 的取值范围.
【解析】(1)由角 A 、 B 、C 成等差数列,
所以 2 +B A C ,···················································································· 1 分
又因为 + + =A B C ,
所以
3B ,·························································································· 2 分
根据正弦定理得, ABC△ 的外接圆直径
3
22 = 1πsin sin 3
bR B . ····················· 4 分
(2)解法一:由(1)知,
3B ,所以 2
3A C ,所以 20 3A , ··········· 5 分
试卷第 8 页,总 20 页
由(1)知 ABC△ 的外接圆直径为 1,根据正弦定理得,
1sin sin sin
a b c
A B C , ······································································ 6 分
∴ 2sin sin sin sin 3a c A C A A
··············································· 8 分
3 13 sin cos2 2A A
3 sin 6A
. ······································································ 9 分
∵ 20 3A ,∴ 5
6 6 6A
∴ 1 sin 12 6A
≤ , ·········································································11 分
从而 3 3 sin 32 6A
≤ ,
所以 a c 的取值范围是 3 , 32
. ························································12 分
解法二:由(1)知,
3B ,根据余弦定理得,
2 2 2 2 cosb a c ac B ··········································································· 6 分
2( ) 3a c ac ··················································································· 7 分
2
2 21( ) 3 ( )2 4
a ca c a c
≥ ,(当且仅当 a c 时,取等号)················· 9 分
因为 3
2b ,
∴ 2( ) 3a c ≤ ,即 3a c ≤ ,······························································10 分
又三角形两边之和大于第三边,所以 3 32 a c ≤ ,································11 分
所以 a c 的取值范围是 3 , 32
. ································································12 分
18. (12 分)
试卷第 9 页,总 20 页
如图,四棱锥 P ABCD , //AB CD , 90BCD , 2 2 4AB BC CD , PAB△ 为等边三角形,
平面 PAB 平面 ABCD , Q 为 PB 中点.
(1) 求证: AQ 平面 PBC ;
(2)求二面角 B PC D 的余弦值.
(1)证明:因为 //AB CD , 90BCD ,
所以 AB BC ,
又平面 PAB 平面 ABCD ,且平面 PAB 平面
ABCD AB ,
所以 BC ⊥平面 PAB ,············································································· 1 分
又 AQ 平面 PAB ,所以 BC ⊥ AQ ,························································ 2 分
因为Q 为 PB 中点,且 PAB△ 为等边三角形,所以 PB ⊥ AQ ,······················· 3 分
又 PB BC B ,
所以 AQ 平面 PBC . ········································································ 4 分
(2)解法一:取 AB 中点为O ,连接 PO ,因为 PAB△ 为等边三角形,所以 PO⊥ AB ,
由平面 PAB ⊥平面 ABCD ,因为 PO 平面 PAB ,所以 PO ⊥平面 ABCD ,········· 5 分
所以 PO ⊥OD ,由 2 2 4AB BC CD , 90ABC ,
可知 //OD BC ,所以OD AB .
以 AB 中点O 为坐标原点,分别以 , ,OD OB OP 所在直线为 , ,x y z 轴,建立如图所示的空间直角坐标系
O xyz . ··································································································· 6 分
所以 (0, 2,0), (2,0,0),A D
(2,2,0), (0,0, 2 3), (0, 2,0)C P B ,
则 2,2,0 , ( 2,0,2 3), (0, 2,0)AD DP CD
,
因为Q 为 PB 中点,所以 (0,1, 3)Q ,
由 (1) 知,平面 PBC 的一个法向量为 (0,3, 3)AQ
.······································· 7 分
设平面 PCD 的法向量为 ( , , )n x y z
,由 0,
0
n CD
n DP
得
2 0
2 2 3 0
y
x z
,取 1z ,则 ( 3,0,1)n
,·················································· 9 分
由
2
3 1cos , 43 3 3 1
AQ nAQ n
AQ n
.··············································11 分
x
y
z
O
第 18 题
试卷第 10 页,总 20 页
因为二面角 B PC D 为钝角,
所以,二面角 B PC D 的余弦值为 1
4 .·······················································12 分
解法二: 取 AB 中点为O ,连接 PO ,因为 PAB△ 为等边三角形,所以 PO⊥ AB ,
由平面 PAB ⊥平面 ABCD ,所以 PO ⊥平面 ABCD ,········································· 5 分
所以 PO ⊥OD ,由 2 2 4AB BC CD , 90ABC ,
可知 //OD BC ,所以OD AB .
以 AB 中点O 为坐标原点,分别以 , ,OA OD OP 所在直线为 , ,x y z 轴,建立如图所示的空间直角坐标系
O xyz . ···································································································· 6 分
所以 (2,0,0), (0, 2,0), ( 2, 2,0),A D C
(0,0, 2 3), ( 2,0,0)P B ,
所以 ( 2, 2,0), (0, 2, 2 3),AD DP
(2,0,0)CD
,
由(1)知,可以 AQ
为平面 PBC 的法向量,
因为Q 为 PB 的中点,
所以 ( 1,0, 3)Q ,
由(1)知,平面 PBC 的一个法向量为 ( 3,0, 3)AQ
,········································ 7 分
设平面 PCD 的法向量为 ( , , )n x y z
,
由 0,
0
n CD
n DP
得
2 0
2 2 3 0
x
y z
,
取 1z ,则 (0, 3,1)n
,············································································· 9 分
所以
2
3 1cos , 43 3 3 1
AQ nAQ n
AQ n
···············································11 分
因为二面角 B PC D 为钝角,
所以,二面角 B PC D 的余弦值为 1
4 .·······················································12 分
解法三:过点 B 作 PC 的垂线 BH ,交 PC 于点 H ,连结 DH .由解法一或二知 PO ⊥平面 ABCD ,CD
平面 ABCD ,所以 PO CD .由条件知OD CD ,
又 PO OD O ,所以CD ⊥平面 POD ,
又 PD 平面 POD ,所以CD PD⊥ ,
又CD CB ,所以 Rt PDC Rt PBC△ ≌ △ ,
所以 DH PC⊥ ,由二面角的定义知,二面角 B PC D 的平面角为 BHD .
x
y
z
O
第 18 题
H
O
试卷第 11 页,总 20 页
·················································································································· 7 分
在 Rt PDC△ 中, 4, 2PB BC , 2 5PC ,
由 PB BC BH PC ,所以 4 2 4 5
52 5
PB BCBH PC
. ······························· 8 分
同理可得 4 5
5DH , ·················································································· 9 分
又 2 2BD .在 BHD△ 中,
2 2 2
cos 2
BH DH BDBHD BH DH
∠ ···································································10 分
2 2
24 5 4 5 2 25 5 1
44 5 4 52 5 5
.
所以,二面角 B PC D 的余弦值为 1
4 .·······················································12 分
19.(12 分)
最近,中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018 年 7 月,大部分一线城市的房
租租金同比涨幅都在 10%以上.某部门研究成果认为,房租支出超过月收入 1
3
的租户“幸福指数”低,房租
支出不超过月收入 1
3
的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙
两小区的租户各 100 户进行调查.甲小区租户的月收入以 0 3, , 3 6, , 6 9, , 9 12, , 12 15, (单
位:千元)分组的频率分布直方图如下:
月收入/千元0 3 6 9 12 15
0.030
0.0600.070
0.160
频率
组距
乙小区租户的月收入(单位:千元)的频数分布表如下:
月收入 [0,3) [3,6) [6,9) [9,12) [12,15]
试卷第 12 页,总 20 页
户数 38 27 24 9 2
(1)设甲、乙两小区租户的月收入相互独立,记 M 表示事件“甲小区租户的月收入低于 6 千元,乙小区
租户的月收入不低于 6 千元”.把频率视为概率,求 M 的概率;
(2)利用频率分布直方图,求所抽取甲小区 100 户租户的月收入的中位数;
(3)若甲、乙两小区每户的月租费分别为 2 千元、1 千元.请根据条件完成下面的 2 2 列联表,并说明
能否在犯错误的概率不超过 0.001 的前提下认为“幸福指数高低与租住的小区”有关.
幸福指数低 幸福指数高 总计
甲小区租户
乙小区租户
总计
附:临界值表
P(K2≥k) 0.10 0.010 0.001
k 2.706 6.635 10.828
参考公式:
2
2 ( )
( )( )( )( )
n ad bcK a b c d a c b d
.
【解析】(1)记 A 表示事件“甲小区租户的月收入低于 6 千元”,记 B 表示事件“乙小区租户的月收入不低
于 6 千元”,
甲小区租户的月收入低于 6 千元的频率为(0.060+0.160) 3=0.66 ,
故 ( )P A 的估计值为0.66 ;·············································································· 1 分
乙小区租户的月收入不低于 6 千元频率为 24 9 2 =0.35100
,
故 ( )P B 的估计值为0.35; ·············································································· 2 分
因为甲、乙两小区租户的月收入相互独立,
事件 M 的概率的估计值为 ( )= ( ) ( ) 0.66 0.35=0.231P M P A P B .························ 4 分
(2)设甲小区所抽取的 100 户的月收入的中位数为t ,
则 0.060 3+( 3) 0.160=0.5t ,····································································· 6 分
解得 5t . ·································································································· 7 分
(3)设 0 :H 幸福指数高低与租住的小区无关,
幸福指数低 幸福指数高 总计
甲小区租户 66 34 100
乙小区租户 38 62 100
总计 104 96 200
试卷第 13 页,总 20 页
·················································································································· 9 分
根据 2 2 列联表中的数据,
得到 2K 的观测值
2200(66 62 38 34) 15.705 10.828104 96 100 100k
, ·······················11 分
所以能在犯错误的概率不超过 0.001 的前提下认为“幸福指数高低与租住的小区”有关. …………12 分
20. (12 分)
已知圆O : 2 2 2x y r ,椭圆
2 2
2 2: 1 0x yC a ba b 的短半轴长等于圆O 的半径,且过C 右焦点的
直线与圆O 相切于点 1 3,2 2D
.
(1)求椭圆C 的方程;
(2)若动直线l 与圆O 相切,且与C 相交于 ,A B 两点,求点O 到弦 AB 的垂直平分线距离的最大值.
【解析】(1)解法一:由条件知
22
2 1 3 12 2r
, ····································· 1 分
所以 1b .·································································································· 2 分
过点 D 且与圆O 相切的直线方程为: 3 3 1
2 3 2y x
,
即 3 2 0x y .······················································································· 3 分
令 0y 得, 2x ,由题意知, 2c ,从而 2 2 2 5a b c ································ 4 分
所以椭圆C 的方程为:
2
2 15
x y .································································· 5 分
解法二:由条件知
22
2 1 3 12 2r
, ······················································· 1 分
所以 1b .·································································································· 2 分
设椭圆右焦点坐标为( ,0)c ,过该点与圆O相切于点 1 3,2 2D
的直线方程为:
3
3 12 ( )12 2
2
y x
c
,
化简得: 2 3 2(1 2 ) 2 3 0x c y c ,··························································· 3 分
圆O到直线的距离等于半径 1,即
2 2
2 3 1
(2 3) ( 2(1 2 ))
c
c
,
解得 2c .
从而 2 2 2 5a b c , ··················································································· 4 分
试卷第 14 页,总 20 页
所以椭圆C 的方程为:
2
2 15
x y .································································· 5 分
解法三:如图,设椭圆的右焦点为 F ,由于直线l 与圆O 相切于点 D,所以三角形 FOD 是以 ODF 为
直角的直角三角形. ······················································································ 1 分
因为切点的坐标为 1 3,2 2D
,所以 60DOF .··········································· 2 分
由条件知
22
2 1 3 12 2r
,所以圆的半径 1r . ······································· 3 分
所以在 Rt FOD△ 中, 2OF .从而 2 2 2 5a b c .······································· 4 分
所以椭圆C 的方程为:
2
2 15
x y .································································· 5 分
(2)解法一:设点O 到弦 AB 的垂直平分线的距离为 d ,
①若直线l x 轴,弦 AB 的垂直平分线为 x 轴,所以 0d ;若直线l y 轴,弦 AB 的垂直平分线为 y 轴,
所以 0d .································································································· 6 分
②设直线l 的方程为 ( 0)y kx m k ,因为l 与圆O 相切,
所以
2
1
1
m
k
,即 21m k .································································· 7 分
由 2
2 15
y kx m
x y
,消去 y 得 2 2 2(1 5 ) 10 5 5 0k x kmx m .
设 1 1 2 2( , ), ( , )A x y B x y ,由韦达定理知:
1 2 1 2 1 22 2
10 2, ( ) 21 5 1 5
km mx x y y k x x mk k
. ······································ 8 分
所以 AB 中点的坐标为 2 2
5 ,1 5 1 5
km m
k k
,
所以弦 AB 的垂直平分线方程为 2 2
1 5
1 5 1 5
m kmy xk k k
,
试卷第 15 页,总 20 页
即 2
4 01 5
kmx ky k
. ················································································· 9 分
所以
2
2
4
1 5
1
km
kd
k
. ···················································································10 分
将 21m k 代入得,
2
22
4
4 4 4 2 51 5
11 5 52 51 5
km
kkd kk kk
≤ ,
(当且仅当 5
5k , 30
5m 时,取等号).·················································11 分
综上所述,点O 到弦 AB 的垂直平分线距离的最大值为 2 5
5
.······························12 分
解法二:设点O 到弦 AB 的垂直平分线的距离为 d ,
①若直线l x 轴,弦 AB 的垂直平分线为 x 轴,所以 0d ;若直线l y 轴,弦 AB 的垂直平分线为 y 轴,
所以 0d .································································································· 6 分
②设 1 1 2 2( , ), ( , )A x y B x y , AB 中点坐标为 0 0( , )M x y ,由点 ,A B 在椭圆上得,
2
21
1
2
22
2
1,5
1,5
x y
x y
①
②
,
由①-②得, 1 2 1 2 1 2 1 2
1 05 x x x x y y y y ,
即 01 2 1 2
1 2 1 2 0
1
5 5AB
xy y x xk x x y y y
,··························································· 7 分
所以直线l 的方程为: 0 0ABy y k x x ,化简得 2 2
0 0 0 05 5 0x x y y x y . ····· 8 分
因为直线l 与圆O 相切,所以
2 2
0 0
2 2
0 0
5
1
25
x y
x y
,化简得 2 2 2 2
0 0 0 05 25x y x y ,
·················································································································· 9 分
又因为弦 AB 的垂直平分线方程为 0
0 0
0
5yy y x xx ,即 0 0 0 05 4 0y x x y x y ,10 分
所以,点O 到弦 AB 的垂直平分线的距离为:
试卷第 16 页,总 20 页
d 0 0 0 0
2 22 2
0 0 0 00 0
0 0
4 4 4 4 2 5
5 55 2 525
x y x y
x y x yx y
y x
≤ ,
当且仅当 2 2
0 05x y 时,取等号. ···································································11 分
所以点O 到弦 AB 的垂直平分线距离的最大值为 2 5
5
.·······································12 分
21. (12 分)
已知函数 ( ) ln(1 ) ( )1
xf x a x ax R , 2 m 1 2e e( ) xg x x .
(1)求函数 ( )f x 的单调区间;
(2)若 0a , 1 2, [0, ]x x e ,不等式 1 2( ) ( )f x g x≥ 恒成立,求实数 m 的取值范围.
【解析】(1)因为 ( ) ln(1 ) ( 1)1
xf x a x xx
,
所以 2 2
1 1( ) ( 1) 1 ( 1)
a ax af x x x x
, ······················································· 1 分
当 0a ≤ 时, ( ) 0f x ,所以函数 ( )f x 的单调递增区间为( 1, ) . ···················· 2 分
当 0a 时,由 ( ) 0
1
f x
x
,得 11 1x a ;
由 ( ) 0
1
f x
x
,得 11x a ; ········································································ 3 分
所以函数 ( )f x 的单调递增区间是 11, 1 a
;递减区间是 11 ,a
. ············ 4 分
综上所述,当 0a ≤ 时,函数 ( )f x 的单调递增区间为( 1, ) .
当 0a 时,函数 ( )f x 的单调递增区间是 11, 1 a
;递减区间是 11 ,a
.
·················································································································· 5 分
(2)若 0a , 1 2, [0, ]x x e ,不等式 1 2( ) ( )f x g x≥ 恒成立,
等价于“对任意 [0, ]x e , min( ) ( )maxf x g x≥ 恒成立”. ······································· 6 分
当 0a 时,由(1)知,函数 ( )f x 在[0, ]e 单调递增,
所以 min( ) 0 0f x f . ·············································································· 7 分
试卷第 17 页,总 20 页
mx+1 2 1 mx+1( ) 2 e + e ( 2)emxg x x x m x mx ,
(i)当 0m≥ 时,由0 ex≤ ≤ ,得 ( ) 0g x ≥ ,知函数 ( )g x 在[0, ]e 单调递增,
所以 e 3 2
max( ) (e) e e 0mg x g ,不符合题意. ·········································· 8 分
当 0m 时,令 ( ) 0g x 得, 20,x x m 或 .
(ii)当 2 0e m ≤ ,即 2 em ≥ 时,在[0, ]e 上 ( ) 0g x ≥ ,所以 ( )g x 在 [0, ]e 上单调递增,所以
e 3 2
max ( ) (e) e emg x g ,只需满足: e 3 2e e 0m ≤ ,即 1
em ≤ ,
所以 2 1
e em ≤ ≤ .···················································································· 9 分
(iii)当 2
em ,即 20 em 时,
在 20, m
上 ( ) 0g x ≥ ,所以 ( )g x 在 20, m
单调递增;
在 2 ,em
上 ( ) 0g x ≤ ,所以 ( )g x 在 2 ,em
单调递减,
所以 2
max 2
2 4( ) ( ) e 0eg x g m m ≤ ,
所以 2
3
4
em ≥ , 得 3
4
em ≤ ,又因为 3
4 2
e e ,所以 2
em .··················11 分
综上所述,实数 m 的取值范围为 1, e
. ·····················································12 分
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做第一个题目计分.
22. [选修 4 4 :坐标系与参数方程] (10 分)
在直角坐标系 xOy 中,直线l 的参数方程为
1
2
3
2
x t
y a t
(t 为参数,aR ).以坐标原点为极点,x 轴
正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 4cos ,射线 03 ≥ 与曲线C 交于 ,O P
两点,直线l 与曲线C 交于 ,A B 两点.
(1)求直线l 的普通方程和曲线 C 的直角坐标方程;
(2)当 AB OP 时,求 a 的值.
试卷第 18 页,总 20 页
【解析】(1)将直线l的参数方程化为普通方程为 3 0x y a . ························ 2 分
由 4cos ,得 2 4 cos ,··································································· 3 分
从而 2 2 4x y x ,即曲线C 的直角坐标方程为 2 24 0x x y . ························· 5 分
(2)解法一:由
4cos
03
≥ ,得 2, 3P
.
所以 2OP , ····························································································· 6 分
将直线l的参数方程代入圆的方程 2 24 0x x y ,得 2 2(2 3 ) 0t a t a
由 0 ,得 2 3 4 2 3 4a ·································································· 8 分
设 A、B 两点对应的参数为 1 2,t t ,
则 2 2
1 2 1 2 1 2AB 4 4 4 3 2t t t t t t a a ····································· 9 分
解得, 0a 或 4 3a .
所以,所求 a 的值为0 或 4 3 . ······································································10 分
解法二:将射线 ( 0)3 ≥ 化为普通方程为 3 0 ( 0)x y x ≥ ,···················· 6 分
由(1)知,曲线C : 2 2( 2) 4x y 的圆心 (2,0)C ,半径为 2 ,
由点到直线距离公式,得C 到该射线的距离为: 2 3 3
3 1
d
,
所以该射线与曲线C 相交所得的弦长为 2 22 2 ( 3) 2OP .·························· 7 分
圆心C 到直线l 的距离为:
2 3 2 3
23 1
a a
, ·············································· 8 分
由
2
2 2
2 3
1 22
a
,得 2(2 3 ) 12a ,即 2 3 2 3a ,····················· 9 分
解得, 0a 或 4 3a
所以,所求 a 的值为0 或 4 3 . ······································································10 分
23.[选修 4 5 :不等式选讲] (10 分)
已知不等式 2 1 2 1 4x x 的解集为 M .
试卷第 19 页,总 20 页
(1)求集合 M ;
(2)设实数 ,a M b M ,证明: 1ab a b ≤ .
【解析】(1)解法一:当 1
2x 时,不等式化为: 2 1 1 2 4x x ,即 1x ,
所以 11 2x ;························································································ 2 分
当 1 1
2 2x ≤ ≤ 时,不等式化为: 2 1 2 1 4x x ,即 2 4 ,
所以 1 1
2 2x ≤ ≤ ; ······················································································ 3 分
当 1
2x 时,不等式化为: 2 1 2 1 4x x ,即 1x ,
所以 1 12 x ; ···························································································· 4 分
综上可知, { 1 1}M x x .······································································ 5 分
解法二:设 ( ) 2 1 2 1f x x x ,
则
14 , ,2
1 1( ) 2, ,2 2
14 , 2
x x
f x x
x x
≤ ≤ ··········································································· 2 分
函数 ( )f x 如下图所示,
·················································································································· 4 分
因为 ( ) 4f x ,由上图可得, 1 1x
试卷第 20 页,总 20 页
所以 1 1M x x .··············································································· 5 分
解法三:不等式 2 1 2 1 4x x ,
等价于
1
2
2 1 1 2 4
x
x x
或
1 1
2 2
2 1 2 1 4
x
x x
≤ ≤ 或
1
2
2 1 2 1 4
x
x x
;··············· 3 分
解得 1 1x ,
1 1M x x .·················································································· 5 分
(2)证法一:因为 ,a M b M ,所以 1, 1a b ≥ . ······································· 6 分
而 1 1ab a b ab a b ······························································· 7 分
= 1 1 0a b ≤ ······················································································ 9 分
所以 1ab a b ≤ . ·················································································10 分
证法二:要证 1ab a b ,
只需证: 1 0a b a b ≤ ,······································································ 6 分
只需证: 1 1 0a b ≤ , ········································································ 8 分
因为 ,a M b M ,所以 1, 1a b ≥ , ··························································· 9 分
所以 1 1 0a b ≤ 成立.
所以 1ab a b ≤ 成立. ···········································································10 分