- 866.29 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题01 集合与常用逻辑用语
易错点1 忽略集合中元素的互异性
设集合,若,则实数的值为
A. B.
C. D.或或
【错解】由得或,解得或或,所以选D.
【参考答案】B
集合中元素的特性:
(1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;
(2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
(3)无序性. 集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系
1.已知集合,若,则的值为________.
【解析】由题意得或,则或.
当时,且,根据集合中元素的互异性可知不满足题意;
当时,,而,故.
【答案】
易错点2 误解集合间的关系致错
已知集合,则下列关于集合A与B的关系正确的是
A. B.
C. D.
【错解】因为,所以,所以,故选B.
【参考答案】D
(1)元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征.
(2)包含、真包含关系是集合与集合之间的关系,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作(或);如果集合,但存在元素,且,我们称集合是集合的真子集,记作(或).
2.已知集合,则下列关于集合A与B的关系正确的是
A. B.
C. D.
【答案】A
易错点3 忽视空集易漏解
已知集合,,若,则实数m的取值范围是
A. B.
C. D.
【错解】∵,∴,∴.
由知,∴,则.
∴m的取值范围是.
【错因分析】空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.由并集的概念知,对于任何一个集合A,都有,所以错解中忽略了时的情况.
【参考答案】C
(1)对于任意集合A,有,,所以如果,就要考虑集合可能是;如果,就要考虑集合可能是.
(2)空集是任何集合的子集,是任何非空集合的真子集,即,.
3.若,若,则实数m的取值范围是
A. B.
C. D.
【解析】当时,,∴m>2;
当时,由题意,得,解得.
∴m≥−1,即所求m的取值范围是.
【答案】D
易错点4 A是B的充分条件与A的充分条件是B的区别
设,则“”是“”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
【参考答案】B
(1)“A的充分不必要条件是B”是指B能推出A,且A不能推出B,即B⇒A且AB;
(2)“A是B的充分不必要条件”则是指A能推出B,且B不能推出A,即A⇒B且.
4.已知,,若的一个充分不必要条件是,则实数的取值范围是
A. B.
C. D.
【解析】由基本不等式得,,由,又因为的一个充分不必要条件是,则,故选A.
【答案】A
易错点5 命题的否定与否命题的区别
命题“且”的否定形式是
A. B.
C. D.
【错解】错解1:“”的否定为“”,“且”的否定为“ 且”,故选C.
【参考答案】D
1.命题的否定与否命题
“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.
2.命题的否定
(1)对“若p,则q”形式命题的否定;
(2)对含有逻辑联结词命题的否定;
(3)对全称命题和特称命题的否定.
(4)全称(或存在性)命题的否定与命题的否定有着一定的区别,全称(或存在性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题.
5.已知,则¬p是¬q
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
【答案】A
将命题的否定形式错误地认为:,∴x2+4x−5<0导致错误.
一、集合
1.元素与集合的关系:.
2.集合中元素的特征:
(1)确定性:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.
(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.
(3)无序性:集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系.
3.常用数集及其记法:
集合
非负整数集(自然数集)
正整数集
整数集
有理数集
实数集
复数集
符号
或
4.集合间的基本关系
表示
关系
自然语言
符号语言
图示
基
本基本关系
子集
集合A中任意一个元素都是集合B的元素
(或
)
真子集
集合A是集合B的子集,且集合B中至少有一个元素不在集合A中
(或
)
相等
集合A,B中元素相同或集合A,B互为子集
空集
,
(1)若集合A中含有n个元素,则有个子集,有个非空子集,有个真子集,有个非空真子集.
(2)子集关系的传递性,即.
(3)空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.
5.集合的基本运算
运算
自然语言
符号语言
Venn图
交集
由属于集合A且属于集合B
的所有元素组成的集合
并集
补集
由全集U中不属于集合A的所有元素组成的集合
(1)集合运算的相关结论
交集
并集
补集
(2)
二、命题及其关系、充分条件与必要条件
1.四种命题
命题
表述形式
原命题
若p,则q
逆命题
若q,则p
否命题
若,则
逆否命题
若,则
2.四种命题间的关系
(1)常见的否定词语
正面词语
=
>(<)
是
都是
任意(所有)的
任两个
至多有1(n)个
至少有1个
否定词
()
不是
不都是
某个
某两个
至少有2(n+1)个
1个也没有
(2)四种命题的真假关系
①两个命题互为逆否命题,它们有相同的真假性;
②两个命题互为逆命题或互为否命题,它们的真假性没有关系.
3.充分条件与必要条件的概念
(1)若p⇒q,则p是q的充分条件,q是p的必要条件;
(2)若p⇒q且qp,则p是q的充分不必要条件;
(3)若pq且q⇒p,则p是q的必要不充分条件;
(4) 若p⇔q,则p是q的充要条件;
(5) 若pq且qp,则p是q的既不充分也不必要条件.
(2)集合判断法判断充分条件、必要条件
若p以集合A的形式出现,q以集合B的形式出现,即p:A={x|p(x) },q:B={x|q(x) },则
①若,则p是q的充分条件;
②若,则p是q的必要条件;
③若,则p是q的充分不必要条件;
④若,则p是q的必要不充分条件;
⑤若,则p是q的充要条件;
⑥若且,则p是q的既不充分也不必要条件.
三、逻辑联结词、全称量词与存在量词
2.复合命题的真假判断
“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:
p
q
真
真
假
假
真
真
真
假
假
真
真
假
假
真
真
假
真
假
假
假
真
真
假
假
3.全称量词和存在量词
量词名称
常见量词
符号表示
全称量词
所有、一切、任意、全部、每一个等
存在量词
存在一个、至少一个、有些、某些等
4.含有一个量词的命题的否定
全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:
命题
命题的否定
含有逻辑联结词的命题的真假判断:
(1)中一假则假,全真才真.
(2)中一真则真,全假才假.
(3)p与真假性相反.
注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.不能混淆这两者的概念.
1.[2017新课标Ⅱ卷文]设集合,则
A. B.
C. D.
【答案】A
2.[2017北京卷文] 已知全集,集合,则
A. B.
C. D.
【答案】C
【解析】因为或,所以,故选C.
【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.
3.[2015湖北卷文] 命题“,”的否定是
A., B.,
C., D.,
【答案】C
【解析】由特称命题的否定为全称命题可知,所求命题的否定为,,故应选C.
【名师点睛】本题考查特称命题和全称命题的否定形式,属识记基础题.
4.[2017北京卷文]设m,n为非零向量,则“存在负数,使得”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】A
(3)命题的等价性,根据互为逆否命题的两个命题等价,将是条件的判断,转化为是条件的判断.
5.[2017浙江卷] 已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4 + S6>2S5”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】C
【解析】由,可知当时,有,即,反之,若,则,所以“d>0”是“S4 + S6>2S5”的充要条件,选C.
【名师点睛】本题考查等差数列的前项和公式,通过套入公式与简单运算,可知, 结合充分必要性的判断,若,则是的充分条件,若,则是的必要条件,该题“”“”,故互为充要条件.
6.已知集合,则实数a的值为
A.−1 B.0
C.1 D.2
【答案】A
【解析】由题意,1+a=0,∴a=−1,本题选择A选项.
7.已知集合,则
A. B.
C. D.
【答案】A
8.设命题p:,则为
A. B.
C. D.
【答案】C
【解析】命题p:,则为.故选C.
9.“若,则,都有成立”的逆否命题是
A.,有成立,则
B.,有成立,则
C.,有成立,则
D.,有成立,则
【答案】D
【解析】由原命题与逆否命题的关系可得:“若,则,都有成立”的逆否命题是“,有成立,则”.本题选择D选项.
10.已知集合,集合,则集合
A. B.
C. D.
【答案】C
【解析】根据题意可得,,解得,满足题意,所以集合=故选C.
11.已知集合A={x|1<2x≤16},B={x|x4 B.a≥4
C.a≥0 D.a>0
【答案】A
【解析】由题意可知:A={x|04.本题选择A选项.
12.“”是“函数在区间无零点”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
13.设、都是非零向量,下列四个条件中,使成立的充分条件是
A. B.
C. D.且
【答案】C
【解析】因为时表示两向量的方向相反,所以不是充分条件;当时,也不能推出,故也不充分;
当时,能够推出,故是充分条件;
而且则是成立的既不充分也不必要条件,
应选C.
14.已知命题:对任意,总有是的充分不必要条件,则下列命题为真命题的是
A. B.
C. D.
【答案】A
15.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是
A. B.
C. D.
【答案】B
【解析】命题p:,为,又为真命题的充分不必要条件为,故
16.在射击训练中,某战士射击了两次,设命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是
A.为真命题 B.为真命题
C.为真命题 D.为真命题
【答案】A
【解析】命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题是“第一次射击没击中目标”,命题是“第二次射击没击中目标”,命题 “两次射击中至少有一次没有击中目标”是,故选A.
17.已知集合,集合,若,则实数=________.
【答案】1
(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.
18.若命题“”是假命题,则的取值范围是__________.
【答案】
【解析】因为命题“”是假命题,所以为真命题,即,故答案为.
19.已知条件,条件,若是的充分不必要条件,则实数的取值范围是______.
【答案】
【解析】条件p:log2(1−x)<0,∴0<1−x<1,解得0a,
若p是q的充分不必要条件,∴.
则实数a的取值范围是:(−∞,0].
故答案为:(−∞,0].
20.设,集合,若,则_________.
【答案】1或2
21.设有两个命题,:关于的不等式(,且)的解集是;:函数的定义域为.如果为真命题,为假命题,则实数的取值范围是_________.
【答案】
【解析】易知p:0