- 628.99 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
考纲要求:
1.会从实际情境中抽象出二元一次不等式组.
2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
基础知识回顾:
1.二元一次不等式(组)的解集
满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集 .
2.二元一次不等式所表示的平面区域
一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界,则把边界画成实线.
3.二元一次不等式表示平面区域的判断方法
直线l:Ax+By+C=0把坐标平面内不在直线l上的点分为两部分,直线l的同一侧点的坐标使式子Ax+By+C的值具有相同的符号,并且两侧点的坐标使Ax+By+C的值的符号相反,一侧都大于0,另一侧都小于0.
4. 线性规划中的基本概念
约束条件:由变量x,y组成的不等式组.
线性约束条件:由x,y的线性不等式(或方程)组成的不等式组;
目标函数:关于x,y的函数,如z=2x+3y等;
线性目标函数:关于x,y的线性目标函数.
可行解:满足线性约束条件的解.
可行域:所有可行解组成的平面区域.
最优解:使目标函数取得最大值或最小值的可行解
线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题
应用举例:
类型一、二元一次不等式(组)表示平面区域
【例1】【内蒙古呼和浩特市2018届高三11月质量普查考试】已知满足条件,则目标函数从最小值连续变化到1时,所有满足条件的点构成的平面区域的面积为( )
A. B. C. D. 1
【答案】A
【例2】【2017河北正定一中高三月考】不等式组所围成的平面区域的面积为( )
A.3 B.6 C.6 D.3
【答案】D
【解析】如图,不等式组所围成的平面区域为△ABC,其中A(2,0),B(4,4),C
(1,1),所求平面区域的面积为S△ABO-S△ACO=(2×4-2×1)=3.
图2
【例3】如图2阴影部分表示的区域可用二元一次不等式组表示为__________.
【答案】
类型二、求线性目标函数的最值
【例4】【2018年高考2017年11月份衡水联考文数】若实数, 满足不等式组则的最大值为( )
A. 12 B. 10 C. 7 D. 1
【答案】B
【解析】作出可行域:
当动直线经过C点时,z最大,
即
故选:B
点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.
【例5】【江西省宜春市2017届高三下学期第五次调研考试】已知实数满足,则的最大值为__________.
【答案】9
【例6】【2017四川省成都市高三摸底】若实数满足条件,则的最大值是( )
A.10 B.8 C.6 D.4
【答案】C
类型三、求非线性目标函数的最值
【例7】【安徽省蒙城县“五校”2018届高三上学期联考】已知变量满足约束条件,则的最大值是__________.
【答案】
【解析】 由题意得,画出约束条件所表示的平面区域
如图所示
又,
设,当取可行域内点时,此时取得最大值,
由,得,此时,
所以的最大值为.
【例8】【黑龙江省齐齐哈尔市第八中学2017届高三第二次模拟考试】已知变量满足则的最大值为( )
A. 2 B. C. D. 1
【答案】A
类型四、求参数的值
【例9】【福建省闽侯第四中学2018届高三上学期期中考试】已知实数, 满足,若使
得目标函数取最大值的最优解有无数个,则实数的值是( )
A. B. C. D.
【答案】D
点睛:简单的线性规划有很强的实用性,线性规划问题常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值.若目标函数中含有参数,则一般会知道最值,此时要结合可行域,确定目标函数取得最值时所经过的可行域内的点(即最优解),将点的坐标代入目标函数求得参数的值.
【例10】【甘肃省天水市第一中学2018届高三上学期第二学段考试】若满足,且
有最大值,则的取值范围是( )
A. B. C. D.
【答案】C
【例11】【2017江苏省泰州中学高三摸底】已知实数、满足若不等式恒成立,则实数的最小值是 .
【答案】
【解析】可行域为一个三角形ABC及其内部,其中,因此,因为在上单调递增,所以,不等式恒成立等价于
点评:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
类型五、线性规划解决实际问题
【例12】【天津市河东区2017届高三二模】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
【答案】投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8 万元的前提下,使可能的盈利最大
考点:利用线性规划求目标函数的最值.
方法、规律归纳:
1.求目标函数最值的一般步骤:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.
2.常见的目标函数有:
(1) 截距型:形如z=ax+by. 求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:
y=-x+,通过求直线的截距的最值间接求出z的最值.
(2)距离型:形如z=(x-a)2+(y-b)2. (3)斜率型:形如z=.
3.解线性规划应用题的步骤
(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题;
(2)求解——解这个纯数学的线性规划问题
(3)作答——将数学问题的答案还原为实际问题的答案.
实战演练:
1.【山东省、湖北省部分重点中学2018届高三第二次联考】若正数满足约束条件,
则的取值范围为( )
A. B. C. D.
【答案】A
2.【四川省成都市第七中学2018届高三上学期一诊】设实数满足约束条件则目标函数的取值范围是()
A. B. C. D.
【答案】D
3.【湖南省五市十校教研教改共同体2018届高三12月联考】若实数满足不等式组,若目标函数的最大值为1,则实数的值是( )
A. B. 1 C. D. 3
【答案】B
【解析】作可行域如图,则直线过点B时,z取得最大值,
,选B.
点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.
4.【江西省南昌县莲塘一中2018届高三11月质量检测】若存在实数使不等式组与不等式都成立,则实数的取值范围是( )
A. B. C. D.
【答案】B
5.【2018届高三南京市联合体学校调研测试】若不等式组所表示的平面区域被直线
分为面积相等的两部分,则的值为________
【答案】
6.【江西省宜春市2017届高三下学期第五次调研考试】已知实数满足,则的取值范围为__________.
【答案】
【解析】作出不等式表示的平面区域,如下图,
7.【重庆市第一中学2018届高三11月月考】已知, 满足约束条件若的最大值为4,则的值为__________.
【答案】2
8.【河南省豫南豫北2018届高三第二次联考联评】已知实数满足,则的取值范围为__________.
【答案】
【解析】可行域是由A围成的三角形及其内部, 表示点 与区域中的点 之间距离的平方,在点B处, 取得最大值为9,最小值即为点到直线的距离 的平方,
故的取值范围为
故答案为
9.【天津市实验中学2018届高三上学期期中(第三阶段)考试】某餐厅装修,需要大块胶合板
张,小块胶合板张,已知市场出售两种不同规格的胶合板。经过测算, 种规格的胶合板可同时截得大块胶合板张,小块胶合板张, 种规格的胶合板可同时截得大块胶合板张,小块胶合板张.已知种规格胶合板每张元, 种规格胶合板每张元.分别用表示购买两种不同规格的胶合板的张数.
(1)用列出满足条件的数学关系式,并画出相应的平面区域;
(2)根据施工需求, 两种不同规格的胶合板各买多少张花费资金最少?并求出最少资金数.
【答案】(1);(2)种胶合板5张, 种胶合板10张花费资金最少,最少资金数为1720元.
(2)由设花费资金,由(1)得,由图可知当时, (元),答: 型木板张, 型木板张,付出资金最少为元.
10.【河南省天一大联考2018届高三上学期阶段性测试(二)】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.
(Ⅰ)求该配送站每天需支付快递员的总工资最小值;
(Ⅱ)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?
(参考数据: , , .)
【答案】(1) 该配送站每天需支付快递员的总工资最小值为2560元;(2) 新手快递员至少连续5 个月被评为“优秀”,日工资会超过老快递员.
(Ⅱ)设新手快递员连续个月被评为“优秀”,日工资会超过老员工.
则由题意可得.
整理得,
两边取对数可得,
所以 ,
又因为,所以的最小值为5.
即新手快递员至少连续5 个月被评为“优秀”,日工资会超过老快递员.