- 1012.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1讲 集合及其运算
一、知识梳理
1.集合与元素
(1)集合元素的三个特征:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合
自然数集
正整数集
整数集
有理数集
实数集
符号
N
N+(或N*)
Z
Q
R
2.集合间的基本关系
表示
关系
自然语言
符号语言
Venn图
子集
集合A中所有元素都在集合B中(即若x∈A,则x∈B)
A⊆B
(或B⊇A)
真子集
集合A是集合B的子集,且集合B中至少有一个元素不在集合A中
AB
(或BA)
集合相等
集合A,B中元素相同
A=B
3.集合的基本运算
集合的并集
集合的交集
集合的补集
图形语言
符号语言
A∪B={x|x∈A,或x∈B}
A∩B={x|x∈A,且x∈B}
∁UA={x|x∈U,且x∉A}
常用结论
1.三种集合运算的性质
(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.
(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.
(3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).
2.集合基本关系的四个结论
(1)空集是任意一个集合的子集,是任意一个非空集合的真子集.
(2)任何一个集合是它本身的子集,即A⊆A.空集只有一个子集,即它本身.
(3)集合的子集和真子集具有传递性:若A⊆B,B⊆C,则A⊆C;若AB,BC,则AC.
(4)含有n个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n-2个非空真子集.
二、教材衍化
1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )
A.A⊆B B.C⊆B C.D⊆C D.A⊆D
答案:B
2.集合A={x|x=-y2+6,x∈N,y∈N}的真子集的个数为( )
A.9 B.8 C.7 D.6
解析:选C.当y=0时,x=6;当y=1时,x=5;当y=2时,x=2;当y≥3时,x∉N,故集合A={2,5,6},共含有3个元素,故其真子集的个数为23-1=7.
3.已知集合A={1,3,-a2},B={1,a+2},若B⊆A,则实数a=________.
解析:因为B⊆A,所以a+2=3或a+2=-a2(此方程无实根),所以a=1,此时A={1,3,-1},B={1,3}.
答案:1
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( )
(2)若{x2,1}={0,1},则x=0,1.( )
(3){x|x≤1}={t|t≤1}.( )
(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.( )
(5)若A∩B=A∩C,则B=C.( )
答案:(1)× (2)× (3)√ (4)√ (5)×
二、易错纠偏
(1)忽视集合中元素的互异性致误;
(2)忽视空集的情况致误;
(3)忽视区间端点值致误.
1.已知集合A={1,3,},B={1,m},若B⊆A,则m=________.
解析:因为B⊆A,所以m=3或m=,即m=3或m=0或m=1,根据集合元素的互异性可知,m≠1,所以m=0或3.
答案:0或3
2.已知集合M={x|x-2=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.
解析:易得M={2}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=.
答案:0或
3.已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁RA)∪B=________.
解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},
(∁RA)∪B={x|x≤1或x>2}.
答案:(2,3) (1,4) (-∞,1]∪(2,+∞)
[学生用书P2]
集合的概念(自主练透)
1.设集合A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B中的元素有( )
A.5个 B.4个
C.3个 D.无数个
解析:选C.依题意有A={-2,-1,0,1,2},代入y=x2+1得到B={1,2,5},
故B中有3个元素.
2.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.
解析:当a=0时,显然成立;当a≠0时,Δ=(-3)2-8a=0,即a=.
答案:0或
3.已知集合A={x∈N|1<x<log2k},集合A中至少有3个元素,则k的取值范围为________.
解析:因为集合A中至少有3个元素,所以log2k>4,所以k>24=16.
答案:(16,+∞)
4.已知集合A={m+2,2m2+m},若3∈A,则m的值为________.
解析:由题意得m+2=3或2m2+m=3,
则m=1或m=-.
当m=1时,m+2=3且2m2+m=3,根据集合中元素的互异性可知不满足题意;
当m=-时,m+2=,而2m2+m=3,符合题意,故m=-.
答案:-
求解与集合中的元素有关问题的注意事项
(1)如果题目条件中的集合是用描述法表示的集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.
(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性.
集合的基本关系(典例迁移)
(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|05},试求m的取值范围.
解:因为B⊆A,
所以①当B=∅时,2m-14.
综上可知,实数m的取值范围为(-∞,2)∪(4,+∞).
(1)判断两集合关系的方法
①对描述法表示的集合,把集合化简后,从表达式中寻找两集合间的关系;
②对于用列举法表示的集合,从元素中寻找关系.
(2)根据两集合间的关系求参数的方法
已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
[提醒] 空集是任何集合的子集,当题目条件中有B⊆A时,应分B=∅和B≠∅两种情况讨论.
1.(2020·西安模拟)设集合M={x|x2-x>0},N=,则( )
A.MN B.NM
C.M=N D.M∪N=R
解析:选C.集合M={x|x2-x>0}={x|x>1或x<0},N=={x|x>1或x<0},所以M=N.故答案为C.
2.设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有( )
A.6个 B.5个
C.4个 D.3个
解析:选A.由题意知,M={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.
3.若集合A={1,2},B={x|x2+mx+1=0,x∈R},且B⊆A,则实数m的取值范围为________.
解析:①若B=∅,则Δ=m2-4<0,
解得-2<m<2,符合题意;
②若1∈B,则12+m+1=0,
解得m=-2,此时B={1},符合题意;
③若2∈B,则22+2m+1=0,
解得m=-,此时B=,不合题意.
综上所述,实数m的取值范围为[-2,2).
答案:[-2,2)
集合的基本运算(多维探究)
角度一 集合的运算
(1)(2019·高考全国卷Ⅰ)已知集合M={x|-40},B={y|y≥2},则(∁RA)∪B=( )
A. B.∅
C.[0,+∞) D.(0,+∞)
【解析】 (1)通解:因为N={x|-20}=,所以∁RA=,又B={y|y≥2},所以(∁RA)∪B=[0,+∞).故选C.
【答案】 (1)C (2)C
角度二 利用集合的运算求参数
(1)(2020·江西上饶重点中学六校联考)已知A=[1,+∞),B=[0,3a-1],若A∩B≠∅,则实数a的取值范围是( )
A.[1,+∞) B.
C. D.(1,+∞)
(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.
(3)已知集合A={x|x2-x-12>0},B={x|x≥m}.若A∩B={x|x>4},则实数m的取值范围是________.
【解析】 (1)由题意可得3a-1≥1,解得a≥,即实数a的数值范围是.故选C.
(2)根据并集的概念,可知{a,a2}={4,16},故只能是a=4.
(3)集合A={x|x<-3或x>4},因为A∩B={x|x>4},所以-3≤m≤4.
【答案】 (1)C (2)4 (3)[-3,4]
(1)集合运算的常用方法
①若集合中的元素是离散的,常用Venn图求解;
②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.
(2)利用集合的运算求参数的值或取值范围的方法
①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;
②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.
[提醒] 在求出参数后,注意结果的验证(满足互异性).
1.(2020·江西吉安一中、新余一中等八所中学联考)已知集合M=[-1,1],N={y|y=x2,x∈M},则M∩N=( )
A.[0,1] B.[-1,1]
C.[0,1) D.(0,1]
解析:选A.由于M=[-1,1],N={y|y=x2,x∈M},所以N=[0,1],所以M∩N=[0,1].故选A.
2.(2020·安徽宣城八校联考)如图,设全集U=N,集合A={1,3,5,7,8},B={1,2,3,4,5},则图中阴影部分表示的集合为( )
A.{2,4} B.{7,8}
C.{1,3,5} D.{1,2,3,4,5}
解析:选A.由题图可知阴影部分表示的集合为(∁UA)∩B,因为集合A={1,3,5,7,8},B={1,2,3,4,5},U=N,所以(∁UA)∩B={2,4}.故选A.
3.已知集合A={x|-1<x<2},B={x|y=},则A∩B=( )
A.{x|-1<x<0} B.{x|-1<x≤0}
C.{x|0<x<2} D.{x|0≤x<2}
解析:选B.因为函数y=有意义,所以-x2-2x≥0,解得-2≤x≤0,所以集合B={x|-2≤x≤0}.又集合A={x|-1<x<2},所以A∩B={x|-1<x≤0}.故选B.
[学生用书P4]
集合新定义问题中的核心素养
(1)(2020·河南南阳第一中学第十四次考试)定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sin α,cos α},则集合A⊙B的所有元素之和为( )
A.1 B.0
C.-1 D.sin α+cos α
(2)(2020·河北保定一模)设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|1<2x<4},Q={y|y=2+sin x,x∈R},那么P-Q=( )
A.{x|00},B={x|x-1<0},则A∩B=( )
A.(-∞,1) B.(-2,1)
C.(-3,-1) D.(3,+∞)
解析:选A.因为A={x|x2-5x+6>0}={x|x>3或x<2},B={x|x-1<0}={x|x<1},所以A∩B={x|x<1},故选A.
3.(2020·河南许昌、洛阳三模)已知集合A={x|y=},B=(0,1),则A∩B=( )
A.(0,1) B.(0,1]
C.(-1,1) D.[-1,1]
解析:选A.由题意得A=[-1,1],又B=(0,1),所以A∩B=(0,1).故选A.
4.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则( )
A.M=N B.M⊆N
C.N⊆M D.M∩N=∅
解析:选B.因为集合M={x|x=2k+1,k∈Z}={奇数},N={x|x=k+2,k∈Z}={整数},所以M⊆N.故选B.
5.(2020·广东湛江测试(二))已知集合A={1,2,3,4},B={y|y=2x-3,x∈A},则集合A∩B的子集个数为( )
A.1 B.2
C.4 D.8
解析:选C.因为A={1,2,3,4},B={y|y=2x-3,x∈A},所以B={-1,1,3,5},所以A∩B={1,3}.所以集合A∩B的子集个数为22=4.故选C.
6.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )
A.9 B.8
C.5 D.4
解析:选A.法一:由x2+y2≤3知,-≤x≤,-≤y≤.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为CC=9,故选A.
法二:根据集合A的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x2+y2=3中有9个整点,即为集合A的元素个数,故选A.
7.已知x∈R,集合A={0,1,2,4,5},集合B={x-2,x,x+2},若A∩B={0,2},则x=( )
A.-2 B.0
C.1 D.2
解析:选B.因为A={0,1,2,4,5},集合B={x-2,x,x+2},且A∩B={0,2},
所以或
当x=2时,B={0,2,4},A∩B={0,2,4}(舍);
当x=0时,B={-2,0,2},A∩B={0,2}.
综上,x=0.故选B.
8.(2020·滁州模拟)已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为( )
A.{1} B.{-1,1}
C.{1,0} D.{-1,1,0}
解析:选D.M={x|x2=1}={-1,1},当a=0时,N=∅,满足N⊆M,当a≠0时,因为N⊆M,所以=-1或=1,即a=-1或a=1.故选D.
9.(2020·太原模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )
A.(-2,1) B.[-1,0]∪[1,2)
C.(-2,-1)∪[0,1] D.[0,1]
解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.
10.(2020·福建厦门3月质量检查)已知集合A={x|x2-4x+3>0},B={x|x-a<0},若B⊆A,则实数a的取值范围为( )
A.(3,+∞) B.[3,+∞)
C.(-∞,1) D.(-∞,1]
解析:选D.A={x|x2-4x+3>0}={x|x<1或x>3},B={x|x-a<0}={x|x