• 791.00 KB
  • 2021-06-15 发布

数学卷·2017届浙江省吴越联盟高三上学期第二次联考(2016

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ 数学试卷 第Ⅰ卷选择题 一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.已知集合,,,则的子集有( )‎ A.2个 B.4个 C.6个 D.8个 ‎2.若“”是“”的充分不必要条件,则实数的取值范围是( )‎ A. B. C. D.‎ ‎3.已知直线以及平面,则下列命题正确的是( )‎ A.若,,则 B.若,,则 ‎ C.若,,则 D.若,,则 ‎ ‎4.若点为平面区域上的一个动点,则的取值范围是( )‎ A. B. C. D.‎ ‎5.已知函数是上的奇函数,当时为减函数,且,则( )‎ A.或 B.或 ‎ C. 或 D.或 ‎6.已知焦点在轴上的双曲线的左焦点为,右顶点为,若线段的中垂线与双曲线有公共点,则双曲线的离心率的取值范围是( )‎ A. B. C. D.‎ ‎7.某次志愿活动,需要从6名同学中选出4人负责四项工作(每人负责一项),若甲、乙均不能负责项工作,则不同的选择方案有( )‎ A.240种 B.144种 C. 96种 D.300种 ‎8.已知都是正实数,且直线与直线互相垂直,则的最小值为( )‎ A.12 B.10 C.8 D.25‎ 第Ⅱ卷 非选择题 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)‎ ‎9.若,则__________.‎ ‎10.二项式的展开式中的系数是_______.‎ ‎11.已知抛物线的焦点坐标为,则_________;若已知点,且点在抛物线上,则的最小值为_____.‎ ‎12.某三棱锥的三视图如图所示,则该三棱锥的俯视图的面积为_________,该三棱锥的体积为_________.‎ ‎13.已知数列满足,,则数列的通项公式为___________;若从数列的前10项中随机抽取一项,则该项不小于8的概率是_________.‎ ‎14.已知和点,满足,若存在实数,使得成立,则点是的__________,实数_______.‎ ‎15.已知函数在定义域内是增函数,则实数的取值范围为__________.‎ 三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎16.(本小题满分14分)‎ 设函数.‎ ‎(1)求函数的最大值;‎ ‎(2)已知中,角为其内角,若,求的值.‎ ‎17. (本小题满分15分)‎ 已知公比为的等比数列的前6项和,且成等差数列.‎ ‎(1)求数列的通项公式;‎ ‎(2)设是首项为2,公差为的等差数列,其前项和为,是否存在,使得不等式成立?若存在,求出的值;若不存在,请说明理由.‎ ‎18. (本小题满分15分)‎ 如图,在三棱柱中,侧面底面,,,,为线段的中点.‎ ‎(1)证明:平面;‎ ‎(2)求直线与平面所成角的正弦值.‎ ‎19. (本小题满分15分)‎ 已知椭圆的中点在原点,一个焦点,且短轴长与长轴长的比是.‎ ‎(1)求椭圆的方程;‎ ‎(2)设点在椭圆的长轴上,点是椭圆上任意一点,若当最小时,点恰好是椭圆的右顶点,求实数的取值范围.‎ ‎20. (本小题满分15分)‎ 已知函数.‎ ‎(1)若函数在处的切线方程为,求实数和的值;‎ ‎(2)若函数在定义域内有两个不同的零点,求实数的取值范围.‎ 浙江省吴越联盟2016~2017学年第二次联考 数学试卷参考答案 一、选择题 ‎1-5:BCBAD 6-8: AAD ‎ 二、填空题 ‎9. 10. 112 11. 4 8 12.‎ ‎13. 14.重心 15. ‎ 三、解答题 ‎16.解:(1)∵‎ ‎………………3分 ‎,………………6分 ‎∴函数的最大值为2.………………8分 ‎(2)∵,∴,………………12分 又∵,解得,………………6分 ‎∴.………………7分 ‎(2)假设存在,使得不等式成立.‎ ‎∵,∴,………………9分 ‎,………………11分 不等式,即,解得,‎ 故存在或5,使得不等式成立.………………15分 ‎18.解:(1)∵,为线段的中点,∴.………………2分 又∵侧面底面,它们的交线为,且平面,‎ ‎∴平面.………………5分 ‎(2)如图,连接,以为原点,所在直线分别为轴,建立空间直角坐标系.………………7分 ‎∵,,,,‎ ‎∴,,.………………9分 设平面的一个法向量为,则,‎ 即取.………………12分 ‎∵,‎ ‎∴直线与平面所成角的正弦值为.………………15分 ‎19.解:(1)设椭圆的方程为,‎ 由焦点知.………………2分 又∵,,‎ ‎∴,.………………5分 ‎∴椭圆的方程为.………………6分 ‎(2)设点坐标为,‎ ‎∵点在椭圆的长轴上,∴.①………………8分 ‎∴.………………………11分 ‎∵当最小时,点恰好是椭圆的右顶点,‎ ‎∴当时,取得最小值.‎ 由于,故,得.②………………14分 由①②知实数的取值范围是.………………15分 ‎20.解:(1)∵,∴.………………1分 ‎∵函数在处的切线方程为,‎ ‎∴,得.………………3分 又∵,∴函数在处的切线方程为,即,‎ ‎∴.………………6分 ‎(2)由(1)知.‎ 当时,∵,∴函数在 上单调递增,从而函数至多有一个零点,不符合题意;………………9分 当时,∵,∴函数在上单调递增,在上单调递减,‎ ‎∴函数.………………12分 ‎∴要满足函数在定义域内有两个不同的零点,必有,得.………………14分 ‎∴实数的取值范围是.………………15分

相关文档