- 794.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
西安中学高2020届高三期中考试
数学(理科)试题
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B. C. D.
2.命题“对任意都有”的否定是( )
A.对任意,都有 B.不存在,使得
C.存在,使得 D.存在,使得
3.在等差数列中,a2=4,a3=6,则a10=( )
A.20 B.22 C.18 D.16
4.下列函数中,既是偶函数又有零点的是( )
A. B. C. D.
5.若,则( )
A. B. C. D.2
6.函数f(x)=2x+3x的零点所在的一个区间是( )
A. B. C. D.
7.已知函数,则=( )
A. B.2 C. D.4
8.若实数满足约束条件,则的最小值是( )
A.2 B.3 C.4 D.5
9.已知,则实数a的取值范围是( )
A. B. C. D.
10.在直角中,,,,点是外接圆上任意一点,则的最大值为( )
A.6 B.8 C.10 D. 12
11.已知定义在上的函数在上有和两个零点,且函数与函数 都是偶函数,则在上的零点至少有( ) 个
A.404 B.406 C.808 D.812
12.定义在R上的函数的导函数为,若对任意实数,都有,且为奇函数,则不等式的解集为( )
A. B. C. D.
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分.
13.已知,,若与平行,则 .
14.若不等式恒成立,则实数的取值范围为 .
15.函数的递减区间为 .
16.已知,函数在区间上的最大值是5,则实数a的取值范围是 .
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(本小题满分12分)
已知向量,,函数的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图像向左平移
个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)在上的值域.
18.(本小题满分12分)
在角中,角A,B,C的对边分别是,若.
(Ⅰ)求角A的大小;
(Ⅱ)若的面积为,,求的周长.
19.(本小题满分12分)
设函数,其中.
(Ⅰ)当时,求的极值点;
(Ⅱ)若在上为单调函数,求的取值范围.
20.(本小题满分12分)
以椭圆的中心为圆心,以为半径的圆称为该椭圆的“伴随”. 已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆及其“伴随”的方程;
(Ⅱ)过点作“伴随”的切线交椭圆于,两点,记为坐标原点)的面积为,求的最大值.
21.(本小题满分12分)
已知函数,曲线在点处的切线方程为.
(Ⅰ)求的解析式;
(Ⅱ)判断方程在内的解的个数,并加以证明.
(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.
22.(本小题满分10分)[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线,为参数,,其中
,在以为极点,轴正半轴为极轴的极坐标系中,曲线:,曲线:.
(Ⅰ)求与交点的直角坐标;
(Ⅱ)若与相交于点,与相交于点,求的最大值.
23.(本小题满分10分)[选修4—5:不等式选讲]
已知,,.求证:
(Ⅰ);
(Ⅱ).
西安中学高2020届高三期中考试
数 学(理科)参考答案
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
A
D
A
B
C
B
A
D
C
B
二、填空题:
13. 14. 15. 16.
三、解答题:
17.解:(Ⅰ)=Asin xcos x+cos 2x
=A
=Asin.··········································(4分)
因为A>0,由题意知A=6.················································(5分)
(Ⅱ)由(Ⅰ)f(x)=6sin.
将函数y=f(x)的图像向左平移个单位后得到y=6sin=6sin的图像;··········································································(7分)
再将得到图像上各点横坐标缩短为原来的倍,纵坐标不变,得到y=6sin的图像.
因此g(x)=6sin.······························································(9分)
因为x∈,所以4x+∈,
故g(x)在上的值域为[-3,6] .·········································(12分)
18.解:(Ⅰ)由正弦定理得:,························(2分)
,
,··········································································(4分)
是的内角,
.··············································································(6分)(Ⅱ)的面积为,
,
由(Ⅰ)知,
,··············································································(8分)由余弦定理得:,·····(10分)
,
得:,
的周长为.·······························································(12分)
19.解:对求导得 ·····························(1分)
(Ⅰ)若,由
令,因为,则, ·······(2
分)
所以随x变化而变化的情况为:
+
0
-
0
+
↗
极大值
↘
极小值
↗
所以,是极大值点,是极小值点.····························(5分)
(注:未注明极大、极小值扣1分)
(Ⅱ)若为上的单调函数,又,所以当时,即在上恒成立. ···················(6分)
(1)当时,,符合题意;···················(8分)
(2)当时,抛物线开口向上,
则的充要条件是,
即,所以.
综合(1)(2)知的取值范围是.···································(12分)
20.解:(Ⅰ)椭圆的离心率为, 则,
设椭圆的方程为
∵椭圆过点,∴,
∴,
∴椭圆的标准方程为,················································( 3
分)
椭圆的“伴随”方程为.···············································(4分)
(Ⅱ)由题意知,. ······················································(5分)
易知切线的斜率存在,设切线的方程为
由得
设, 两点的坐标分别为, , 则
, .··················································(7分)
又由与圆相切, 所以,.·············(8分)
所以
······························································(10分)
.
令,则,代入上式得:
(当且仅当,即时等号成立)
所以的最大值为1.···············································(12分)
21.解:(Ⅰ)直线的斜率为,过点,
,则,即,
,所以.··············································(4分)
(Ⅱ)方程在上有3个解.
证明:令,则,
又,,
所以在上至少有一个零点,
又在上单调递减,故在上只有一个零点.····················(6分)
当时,,故,
所以函数在上无零点.················································(8分)
当时,令,,
所以在上单调递增,,,
所以,使得在上单调递增,在上单调递减.
又,,所以函数在上有2个零点.
综上,方程在上有3个解.··································(12分)
22.解:(Ⅰ)曲线的直角坐标方程为,························(1分)
曲线的直角坐标方程为.·································(2分)
联立,解得,或.
所以与的交点的直角坐标为和.···························(4分)
(Ⅱ)曲线的极坐标方程为,其中.····(5分)
因此的极坐标为,的极坐标为,·············(7分)
所以==,·································(9分)
当时,取得最大值,最大值为4. ·······························(10分)
23.证明:(Ⅰ)
(当且仅当时等号成立)····(5分)
也可以用柯西不等式直接证明.
(Ⅱ)
······················································(7分)
···················································································(9分)
(当且仅当时等号成立)
从而.···························································(10分)
也可以用分析法证明.