• 251.95 KB
  • 2021-06-15 发布

专题8-7+立体几何中的向量方法(Ⅰ)—证明平行与垂直(练)-2018年高考数学(理)一轮复习讲练测

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年高考数学讲练测【新课标版】【练】第八章 立体几何 第07节 立体几何中的向量方法(Ⅰ)—证明平行与垂直 A 基础巩固训练 ‎1.已知等差数列的前n项和为,且,则过点和的直线的一个方向向量的坐标可以是( )‎ A. B.(2,4) C. D.(-1,-1)‎ ‎【答案】A ‎2.直线l的方向向量s=(-1,1,1),平面α的法向量为n=(2,x2+x,-x),若直线l∥平面α,则x的值为(  )‎ A.-2         B.- C. D.± ‎【答案】D ‎【解析】线面平行时,直线的方向向量垂直于平面的法向量,故-1×2+1×(x2+x)+1×(-x)=0,解得x=±.‎ ‎3.【河南省豫南九校第三次联考】已知直线的方向向量,平面的法向量,若, ,则直线与平面的位置关系是( )‎ A. 垂直 B. 平行 C. 相交但不垂直 D. 直线在平面内或直线与平面平行 ‎【答案】D ‎【解析】因为,即,所以直线在平面内或直线与平面平行,故选D.‎ ‎4.【2017届河北定州中学高三周练】已知点A(1,-2,0)和向量=(-3,4,12),若向量,且,则B点的坐标为( )‎ A.(-5,6,24) ‎ B.(-5,6,24)或(7,-10,-24)‎ C.(-5,16,-24) ‎ D.(-5,16,-24)或(7,-16,24)‎ ‎【答案】B ‎5.如图,已知矩形ABCD,PA⊥平面ABCD,M、N、R分别是AB、PC、CD的中点.求证:‎ ‎(1)直线AR∥平面PMC;‎ ‎(2)直线MN⊥直线AB.‎ ‎【答案】见解析.‎ ‎【解析】证法1:(1)连接CM,∵ABCD为矩形,R、M分别为AB、CD的中点,‎ ‎∴MA CR,∴AMCR为平行四边形,∴CM∥AR,‎ 又∵AR⊄平面PMC,∴AR∥平面PMC.‎ ‎(2)连接MR、NR,在矩形ABCD中,AB⊥AD,PA⊥平面AC,∴PA⊥AB,AB⊥平面PAD,∵MR∥AD,NR∥PD,‎ ‎∴平面PDA∥平面NRM,‎ ‎∴AB⊥平面NRM,则AB⊥MN.‎ 证法2:(1)以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设AB=a,AD=b,AP=c,则B(a,0,0),D(0,b,0),P(0,0,c),C(a,b,0),∵M、N、P 分别为AB、PC、CD的中点,∴M(,0,0),N(,,),R(,b,0),∴=(,b,0),=(,0,-c),=(,b,0),设=λ+μ,‎ ∴∴=,∴AR∥MC,‎ ‎∵AR⊄平面PMC,∴AR∥平面PMC.‎ ‎(2)=(0,,),=(a,0,0),‎ ‎∵·=0,∴⊥,∴MN⊥AB.‎ ‎ B能力提升训练 ‎ ‎1.在四棱锥中,,,,则这个四棱锥的高( )‎ A.1 B.2 C.13 D.26 ‎ ‎【答案】B ‎2.已知平面α,β的法向量分别为μ=(-2,3,-5),v=(3,-1,4),则(  )‎ A.α∥β B.α⊥β C.α、β相交但不垂直 D.以上都不正确 ‎【答案】C ‎【解析】∵≠≠,∴μ与v不是共线向量,‎ 又∵μ·v=-2×3+3×(-1)+(-5)×4=-29≠0,‎ ‎∴μ与v不垂直,∴平面α与平面β相交但不垂直.‎ ‎3.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上且AM∥平面BDE.则M点的坐标为(  )‎ A.(1,1,1) B. C. D. ‎【答案】 C ‎【解析】 ∵M在EF上,设ME=x,∴M,‎ ‎∵A(,,0),D(,0,0),E(0,0,1),B(0,,0),‎ ‎∴=(,0,-1),=(0,,-1),‎ =(x-,x-,1).‎ 设平面BDE的法向量n=(a,b,c),‎ 由得a=b=c.‎ 故可取一个法向量n=(1,1,).‎ ‎∵n·=0,∴x=1,∴M.‎ ‎4. 如图所示,正方体ABCD-A1B‎1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是(  ).‎ A.AC⊥BE B.EF∥平面ABCD C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值 ‎【答案】D ‎①当点E在D1处,点F为D1B1的中点时,E(1,0,1),F (,,1),‎ ‎∴=(0,-1,1),=(,-,1),‎ ‎∴·=.又||=,||=,‎ ‎∴cos〈,〉===.‎ ‎∴此时异面直线AE与BF成30°角.‎ ‎②当点E为D1B1的中点,F在B1处,此时E(,,1),F(0,1,1),∴=(-,-,1),=(0,0,1),‎ ‎∴·=1,||=,∴cos〈,〉==,故选D.‎ ‎5. 如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.‎ ‎(1)求证:AF∥平面BCE;‎ ‎(2)求证:平面BCE⊥平面CDE.‎ ‎【答案】见解析.‎ ‎【解析】证法一:(1)‎ 取CE的中点P,连接FP、BP,‎ ‎∵F为CD的中点,‎ ‎∴FP∥DE,且FP=DE.‎ 又AB∥DE,且AB=DE,‎ ‎∴AB∥FP,且AB=FP,‎ ‎∴四边形ABPF为平行四边形,∴AF∥BP.‎ 又∵AF⊄平面BCE,BP⊂平面BCE,‎ ‎∴AF∥平面BCE.‎ ‎∵F为CD的中点,∴F(a,a,0).‎ ‎(1)=(a,a,0),=(a,a,a),=(‎2a,0,-a),∴=(+),‎ ‎∵AF⊄平面BCE,∴AF∥平面BCE.‎ ‎(2)∵=(a,a,0),=(-a,a,0),=(0,0,-‎2a),∴·=0,·=0,‎ ‎∴⊥,⊥,∴AF⊥CD,AF⊥ED.‎ 又CD∩DE=D,∴AF⊥平面CDE.‎ 又AF∥平面BCE,∴平面BCE⊥平面CDE.‎ C思维扩展训练 ‎1.如图,三棱柱的各棱长均为2,侧棱与底面所成的角为,为锐角,且侧面⊥底面,给出下列四个结论:‎ ‎①;‎ ‎②;‎ ‎③直线与平面所成的角为;‎ ‎④.‎ 其中正确的结论是( )‎ A.①③ B.②④ C.①③④ D.①②③④‎ ‎【答案】C.‎ ‎2.【2017浙江省嘉兴一中第一次联考】在长方体ABCD-‎A‎1‎B‎1‎C‎1‎D‎1‎中,AD=AA‎1‎=1‎,AB=2‎,点E在棱AB上移动,则直线D‎1‎E与A‎1‎D所成角的大小是__________,若D‎1‎E⊥EC,则AE=‎__________.‎ ‎【答案】 ‎90‎‎∘‎ 1‎ ‎【解析】长方体ABCD﹣A1B1C1D1中以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,又AD=AA‎1‎=1‎,AB=2‎,点E在棱AB上移动 则D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0),‎ 设E(1,m,0),0≤m≤2,‎ 则D‎1‎E=(1,m,﹣1),A‎1‎D=(﹣1,0,﹣1),‎ ‎∴D‎1‎E•A‎1‎D=﹣1+0+1=0,‎ ‎∴直线D1E与A1D所成角的大小是90°.‎ ‎∵D‎1‎E=(1,m,﹣1),EC=(﹣1,2﹣m,0),D1E⊥EC,‎ ‎∴D‎1‎E‎∙‎EC=﹣1+m(2﹣m)+0=0,‎ 解得m=1,∴AE=1.‎ 故答案为:900,1.‎ ‎3.在空间坐标系中,已知三点A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的单位法向量是 .‎ ‎【答案】.‎ ‎4.【天津六校联考】如图,在四棱锥中,底面,底面为正方形,,分别是的中点.‎ ‎(1)求证:;‎ ‎(2)在平面内求一点,使平面,并证明你的结论;‎ ‎(3)求与平面所成角的正弦值.‎ ‎【答案】(1)详见解析;(2)详见解析;(3) .‎ ‎【解析】‎ 以所在直线为轴、轴、轴建立空间直角坐标系(如图),设,则,,,,,,.‎ ‎(1) 因为,所以. ‎ ‎(2)设,则平面,,‎ ‎,所以,‎ ‎,所以 ‎∴点坐标为,即点为的中点. ‎ ‎(3)设平面的法向量为.‎ 由得,即,‎ 取,则,,得.‎ ‎, ‎ 所以,与平面所成角的正弦值的大小为 ‎ ‎

相关文档