• 26.00 KB
  • 2021-04-20 发布

数学计划总结之《烙饼问题》教学反思

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学计划总结之《烙饼问题》教学反思 ‎ ‎  我上课的内容是人教版四年级上册数学教材第七单元《数学广角》里的例 1——《烙饼问题》。这个单元选取了烙饼、沏茶、田忌赛马等生活中显而易见的事例,向学生初步渗透统筹、合理安排时间和用优化思想解决问题的重要数学思想,旨在提高学生解决实际问题的能力。有些教者把烙饼和沏茶问题放在一个课时内完成,但我个人认为,烙饼这个素材在“用优化思想解决问题”方面很具代表性,能够通过操作、观察、对比、猜测、验证等方式,训练学生的思维。有一定的难度和深度,很值得挖掘。于是我用一个课时的时间来教学《烙饼问题》。‎ ‎  在教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----多张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。整节课根据不同的教学环节我渗透了以下理念:‎ ‎  1、创造多种形式,突破重、难点。为了突破难点,很短的时间让学生了解烙一张、两张饼至少需要的时间,为探究三张饼的最佳烙法作好铺垫。在探究三张饼的最佳烙法时,学生首先想到的是要12分钟,我就问:“还有更省时的方案吗?”激发学生的求知欲,迫使他们重新思考和操作。于是出现了两种方法:第一种先烙烙两张,再烙一张,学生提出异议,并让他进行板演,出现我们预设的第二种方法:三张轮换烙。并通过多媒体课件直观展示两种轮换烙的过程,直观比较出第一种要烙4次,而第二种只需烙三次,节省3分钟,又通过表格的填写加深三张轮换烙的方法。为什么第二种三张轮换烙方法会比第一种方法节省3分钟呢,通过再现直观图,学生得出:保证每次锅子里总有两张饼呀。并培养空间想象能力,从而达到突破难点的目的。为了突出“如何用优化思想解决生活中的问题”这一教学重点,我是这样做的:首先,在探究烙两张饼至少需要几分钟时,有的学生说要12分钟,有的学生说6分钟,从而引发分歧,激起学生争辩及思维的碰撞。再通过各自陈述理由后对比发现:锅子里同时烙两张饼更省时省资源,让学生初步感受到从多种方案中寻找最优方案的重要性。其次,在探究三张饼至少需要几分钟的时候,有的学生说要12分钟,有的学生说要9分钟。再次引导学生对比发现:两张同时烙法操作起来简单,三张轮换烙法虽然复杂,但更省时,也符合题意。进一步加深了学生对“选择优化思想解决问题”‎ 重要性的印象。另外,在探究6张饼的最佳烙法时,也许有的学生会选择用同时烙法烙三次,有的学生会选择用三张轮换烙法烙两次。虽然两种方案都是需要18分钟,但通过引导学生对比发现,用同时烙法烙三回操作起来更简便。让学生再次感受到在时间相同的情况下,还要选择操作过程的最优化。‎ ‎  2、解放学生的手,让学生操作实践。《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。如,我让学生明确要求以圆形纸片替代饼,与家人或小伙伴进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。我要求用学具同桌模拟烙饼,一人烙饼,一人记录。有多种方案的请轮流记录。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。‎ ‎  3、解放学生口,让学生畅所欲言。上课时,我让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点)时,由于有小精灵的要求“怎样才能尽快吃上饼”这句话,所以在实际的课堂里,虽然出现像教材中提到的烙一张饼要6分时间,烙3张饼要18分这一方案,但很快被孩子们自己给否定了,因为四年级学生能充分利用“每次能烙两张饼”这个条件。‎ ‎  4、给孩子一个发展的课堂。教材在最后安排了“‎ 如果要烙的是4张饼,5张饼……9张饼呢?”你发现了什么“。在课堂中,学生能根据表格中的烙饼方法渗透数学转化的思想,把多张饼都转化成两张同时烙或三张轮换烙,还有的孩子还从表格中发现双数饼了两张两张的烙,单数饼先两张两张烙,最后三张轮换烙的规律;还根据表格中的烙饼张数和烙饼的时间之间的关系得出。”饼数×3=烙饼总时间“这一规律,使整节课得到升华,数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。‎