• 16.83 KB
  • 2021-04-12 发布

2020高三理科数学上期教学计划3篇

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2020高三理科数学上期教学计划3篇 ‎【篇一】高三理科数学上期教学计划 ‎  一、学生基本情况 ‎  高三1班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。‎ ‎  二、高考要求 ‎  1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。‎ ‎  2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。‎ ‎  3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。‎ ‎  4、注重应用题的考查,文科试题应用有3道题,共28分。‎ ‎  5、注重学生创新意识的考查,注重学生创造能力的考查。‎ ‎  三、教学措施 ‎  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。‎ ‎  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:‎ ‎  基础练习→典型例题→作业→课后检查 ‎  (1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。‎ ‎  (2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。‎ ‎  (3)作业:本节课的基础问题,典型问题及下一节课的预习题。‎ ‎  (4)课后检查;重点检查改错本及复习资料上的作业。‎ ‎  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。‎ ‎  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。‎ ‎  5、发挥集体的力量,共同培养尖子学生。‎ ‎  6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。‎ ‎  ‎ ‎【篇二】高三理科数学上期教学计划 ‎  一、学生的基本情况分析 ‎  高三十个理科班,总人数462人。相当多的同学对基础知识掌握较差,学习习惯不太好,学习数学的气氛不太浓,学习不够刻苦,除两个奥赛班外,其余各班几乎没有尖子生,且各班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,培优辅差任务非常重;学生对数学学习普遍存在困难,且部分学生学习主动性不强,习惯较差,复习任务很艰巨。‎ ‎  二、复习指导思想 ‎  以现代教育理论,课程标准和考试指导纲要为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育;以基本知识、基本技能、基本思想和基本方法为基础,夯实基础,突出重点,突破难点,完善体系,构筑知识网络;以课堂教学为重点,结合知识与能力要求及学生实际,采用小步子、递进式教学模式,科学安排教学内容与教学难度,改革教学方法,提高课堂教学效益;以检查落实为切入口,不走过场,抓好落实,收到实效;以培优辅差为特色,让优生更优,让有弱科的学生克服瓶颈与木桶现象的不足,脱颖而出;争取本学年高三数学教学上一个新台阶。‎ ‎  三、教学目的要求 ‎  第一轮为系统复习,时间为第一学期,大约在三月初结束。此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些最基本的数学意识,掌握一些最基本的数学方法。同时加强章、节知识过关,注重训练的规范性,思考的严密性,有意识进行一定的综合训练,先小综合再大综合,适当地提升学生综合运用能力。‎ ‎  ‎ ‎【篇三】高三理科数学上期教学计划 ‎  一、指导思想 ‎  今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。高三理科数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。提高学生的学习能力仍是我们的奋斗目标。近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。‎ ‎  二、注意事项 ‎  1.高度重视基础知识,基本技能和基本方法的复习。‎ ‎  “基础知识,基本技能和基本方法”是高考复习的重点。我们希望在复习课中要认真落实“基础练习”,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养。特别是要学会把基础知识放在新情景中去分析,应用。‎ ‎  2.高中的'‘重点知识’在复习中要保持较大的比重和必要的深度。‎ ‎  原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何中的综合问题等。在教学中,要避免重复及简单的操练。新增的内容:算法、概率等内容在复习时也应引起我们的足够重视。总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习。‎ ‎  3.重视‘通性、通法’的落实。‎ ‎  要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。‎ ‎  4.认真学习,研究近三年的高考试题,提高复习课的效率。‎ ‎  《考试说明》是命题的依据,复习的依据。高考试题是《考试说明》的具体体现。只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命题专家在认识《考试说明》上的差距。并力求在二轮复习中缩小这一差距,更好地指导我们的复习。‎ ‎  5.渗透数学思想方法,培养数学学科能力。‎ ‎  《考试说明》明确指出要考查数学思想方法,要加强学科能力的考查。我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类讨论的思想、数形结合的思想。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。‎ ‎  6.二轮复习课中注意新的目标定位。‎ ‎  ①培养学生搜集和处理信息的能力;‎ ‎  ②激发学生的创新精神;‎ ‎  ③培养学生在学习过程中的的合作精神;‎ ‎  ④激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用。‎ ‎  三、知识和能力要求 ‎  1.知识要求 ‎  对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。‎ ‎  (1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识或初步的理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。‎ ‎  (2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。‎ ‎  (3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。‎ ‎  2.能力要求 ‎  能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。‎ ‎  (1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷运算途径。‎ ‎  (2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。‎ ‎  (3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。‎ ‎  (4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。‎ ‎  (5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。‎ ‎  (6)应用意识和实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题。‎ ‎  (7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。‎