- 35.17 KB
- 2021-05-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
小学数学教师招聘考试试题(一)
一、选择题(共 14 个小题,每小题 4 分,共 56 分.在每个小题给出的四个备
选答案中,只有一个是符合题目要求的)
1.-5 的绝对值是( ).
A.5 B. C. D.-5
2.计算 的结果是( ).
A.-9 B.-6 C. D.
3.计算 的结果是( ).
A. B.a C. D.
4.2002 年我国发现首个世界级大气田,储量达 6000 亿立方米,6000 亿立
方米用科学记数法表示为( ).
A. 亿立方米 B. 亿立方米
C. 亿立方米 D. 亿立方米
5.下列图形中,不是中心对称图形的是( ).
A.菱形 B.矩形 C.正方形 D.等边三角形
6.如果两圆的半径分别为 3 cm 和 5 cm,圆心距为 10 cm,那么这两个圆的
公切线共有( ).
A.1 条 B.2 条 C.3 条 D.4 条
7.如果反比例函数 的图象经过点 P(-2,3),那么 k 的值是( ).
A.-6 B. C. D.6
8.在△ABC 中,∠C=90°.如果 ,那么 sinB 的值等于( ).
A. B. C. D.
9.如图,CA 为⊙O 的切线,切点为 A,点 B 在⊙O 上.如果∠CAB=55°,
那么∠AOB 等于( ).
A.55° B.90° C.110° D.120°
10.如果圆柱的底面半径为 4 cm,母线长为 5 cm,那么它的侧面积等于
( ).
A.20p B.40p C.20 D.40
11.如果关于 x 的一元二次方程 有两个不相等的实数根,那么 k 的取值范
围是( ).
A.k<1 B.k≠0 C.k<1 且 k≠0 D.k>1
12.在抗击“非典”时期的“课堂在线”学习活动中,李老师从 5 月 8 日至
5 月 14 日在网上答题个数的记录如下表:
日期
5 月 8 日
5 月 9 日
5 月 10 日
5 月 11 日
5 月 12 日
5 月 13 日
5 月 14 日
答题个数
68
55
50
56
54
48
68
在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是( ).
A.68,55 B.55,68 C.68,57 D.55,57
13.如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 E.如果 AB=10,CD=8,
那么 AE 的长为( ).
A.2 B.3 C.4 D.5
14.三峡工程在 6 月 1 日至 6 月 10 日下闸蓄水期间,水库水位由 106 米升
至 135 米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正
确反映这 10 天水位 h(米)随时间 t(天)变化的是( ).
二、填空题(共 4 个小题,每小题 4 分,共 16 分)
15.在函数 中,自变量 x 的取值范围是________.
16.如图,在等边三角形 ABC 中,点 D、E 分别在 AB、AC 边上,且 DE∥BC.如
果 BC=8 cm,AD∶AB=1∶4,那么△ADE 的周长等于________ cm.
17.如图,B、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC=45°,∠ACB
=45°,BC=60 米,则点 A 到岸边 BC 的距离是________米.
18.观察下列顺序排列的等式:
9×0+1=1,
9×1+2=11,
9×2+3=21,
9×3+4=31,
9×4+5=41,
……
猜想:第 n 个等式(n 为正整数)应为________.
三、(共 3 个小题,共 14 分)
19.(本小题满分 4 分)
分解因式: .
20.(本小题满分 4 分)
计算:
21.(本小题满分 6 分)
用换元法解方程
四、(本题满分 5 分)
22.如图,在□ABCD 中,点 E、F 在对角线 AC 上,且 AE=CF.请你以 F 为
一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已
有的某一条线段相等(只须证明一组线段相等即可).
(1)连结________.
(2)猜想:________=________.
(3)证明:
五、(本题满分 6 分)
23.列方程或方程组解应用题:
在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二
环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学
汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时 10000 辆.”
乙同学说:“四环路比三环路车流量每小时多 2000 辆.”
丙同学说:“三环路车流量的 3 倍与四环路车流量的差是二环路车流量的 2
倍.”
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多
少.
六、(本题满分 7 分)
24.已知:关于 x 的方程 的两个实数根是 、 ,且 .如果关于 x 的另一个
方程 的两个实数根都在 和 之间,求 m 的值.
七、(本题满分 8 分)
25.已知:在 ABC 中,AD 为∠BAC 的平分线,以 C 为圆心,CD 为半径的半
圆交 BC 的延长线于点 E,交 AD 于点 F,交 AE 于点 M,且∠B=∠CAE,FE∶FD=
4∶3.
(1)求证:AF=DF;
(2)求∠AED 的余弦值;
(3)如果 BD=10,求△ABC 的面积.
八、(本题满分 8 分)
26.已知:抛物线 与 x 轴的一个交点为 A(-1,0).
(1)求抛物线与 x 轴的另一个交点 B 的坐标;
(2)D 是抛物线与 y 轴的交点,C 是抛物线上的一点,且以 AB 为一底的梯
形 ABCD 的面积为 9,求此抛物线的解析式;
(3)E 是第二象限内到 x 轴、y 轴的距离的比为 5∶2 的点,如果点 E 在(2)
中的抛物线上,且它与点 A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上
是否存在点 P,使△APE 的周长最小?若存在,求出点 P 的坐标;若不存在,请说
明理由.
学数学概念的形成过程主要包括(1)概念的引入;(2)概念的形成;(3)概
念的运用。
例如:对于“乘法分配律”的讲解:
(1)概念的引入:根据已经学过的乘法交换律,只是对于乘法的定律,在
计算时,很多时候会遇到乘法和加法相结合的式子,如(21+14)×3。
(2)概念的形成:通过让学生计算,归纳发现乘法分配律。
比较大小:①(32+11)×532×5+11×5
②(26+17)×226×2+17×2
学生通过计算后很容易发现每组中左右两个算式的结果相等,再引导学生观
察分析,可以看出左边算式是两个数的和与一个数相乘,右边算式是两个加数分
别与这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同。然后就可
以引导学生归纳总结出“乘法分配律”,即(a+b)×c=a×c+b×c。
(3)概念的运用:通过运用概念达到掌握此概念的目的。
计算下题:①(35+12)×10
②(25+12.5)×8
学生通过运用所学的乘法分配律会很快得到结果,比先算括号里两个数的和
再乘外面的数要快的多,从而学生在以后的计算中会想到运用乘法分配律,也就
掌握了概念。
小学数学教师招聘考试试题(二)
一、填空(每空 0.5 分,共 20 分)
1、数学是研究( 数量关系 )和( 空间形式 )的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性 )、(普及性 )
和(发展性 )。义务教育的数学课程应突出体现(全面 )、(持续 )、(和谐发展 )。
3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:
(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展 )。
4、学生是数学学习的(主体),教师是数学学习的( 组织者 )、( 引导者)与(合
作者)。
5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数 )、(图形
与几何 )、(统计与概率)、( 综合与实践)四大领域;将数学教学目标分为(知识
与技能 )、(数学与思考)、(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程。除(接受学
习 )外,(动手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。学生
应当有足够的时间和空间经历观察、实验、猜测、(计算)、推理、(验证)等活动
过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必
须的数学的“四基”包括(基础知识 )、(基本技能 )、(基本思想)、( 基本活动经
验);“两能”包括(发现问题和提出问题能力)、
(分析问题和解决问题的能力)。
8、教学中应当注意正确处理:预设与(生成)的关系、面向全体学生与(关注学生
个体差异 )的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学
手段多样化)的关系。
二、简答题:(每题 5 分,共 30 分)
1、义务教育阶段的数学学习的总体目标是什么?
通过义务教育阶段的数学学习,学生能:
(1). 获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基
本思想、基本活动经验。
(2). 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用
数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
(3). 了解数学的价值,激发好奇心,提高学习数学的兴趣,增强学好数学的信
心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
2、课程标准对解决问题的要求规定为哪四个方面?
(1)初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的
实际问题,发展应用意识和实践能力。
(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发
展创新意识。
(3)学会与他人合作、交流。
(4)初步形成评价与反思的意识。
3、“数感”主要表现在哪四个方面?
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量
关系等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述
具体情境中的数量关系。
4、课程标准的教学建议有哪六个方面?
(1).数学教学活动要注重课程目标的整体实现;
(2).重视学生在学习活动中的主体地位;
(3).注重学生对基础知识、基本技能的理解和掌握;
(4).引导学生积累数学活动经验、感悟数学思想;
(5).关注学生情感态度的发展;
(6).教学中应当注意的几个关系:“预设”与“生成”的关系。面向全体学生与关
注学生个体差异的关系。合情推理与演绎推理的关系。使用现代信息技术与教学
手段多样化的关系。
5、估算有哪三大特点?如何评价估算?
① 估算过程多样
② 估算方法多样
③ 估算结果多样
评价:在上述前提下,估算没有对和错之分,但有估算结果与精确计算结果的差
异大小之分。
6、可以用哪四种不同的方式确定物体所在的方向和位置?
① 上下、前后、左右
② 东、南、西、北、东南、西南、东北、西北
③数对
④ 观测点、方向、角度、距离
三、运用课程标准的新理念分析(10 分)
下面上《“1——5”的认识》的教学设计中的教学目标,请你依据课程标准对这
一内容的教学目标加以简评。
教学目标:
1、使学生会用1——5各数表示物体的个数,知道1——5的数序,能认读1——5
各数,建立初步的数感。
2、培养学生初步的观察能力和动手操作能力。
3、体验与同伴互相交流学习的乐趣。
4、让学生感知生活中处处有数学。
简 评:
(1)全面(知识与技能、数学思考、解决问题、情感与态度)。
(2)具体(数量、数序、数感)。
(3)准确(会用、体验、感知)。
(4)突出了学习方式的更新。
四、解答题:(每题 4 分,共 40 分)
1、6 个好朋友见面,每两人握一次手,一共握( 15 次 )手。
2、地面以上 1 层记作+1 层,地面以下 1 层记作-1 层,从+2 层下降了 9 层,
所到的这一层应该记作( -8 )层。
3、有一个整数除 300,262,205 所得的余数相同,则这个整数最大是( 19 )。
4、大约在 1500 年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今
有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”鸡有( 23 )只,
兔有( 12 )只。
5、某小学四、五年级的同学去参观科技展览。346 人排成两路纵队,相邻两排
前后各相距 0.5 米,队伍每分钟走 65 米,现在要过一座长 629 米的桥,从排
头两人上桥至排尾两个离开桥,共需要( 11 )分钟。
6、用绳子三折量水深,水面以上部分绳长 13 米;如果绳子五折量,则水面以
上部分长 3 米,那么水深是( 12 )米。
7、小玲沿某公路以每小时 4 千米速度步行上学,沿途发现每隔 9 分钟有一辆公
共汽车从后面超过她,每隔 7 分钟遇到一辆迎面而来的公共汽车.若汽车发车的
间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是( 63/8 )分钟。
8、一个合唱队共有 50 人,暑假期间有一个紧急演出,老师需要尽快通知到每
一个队员。如果用打电话的方式,每分钟通知 1 人。请你设计一个打电话的方
案,最少花( 6 分钟 )时间就能通知到每个人。
9、口袋里装有 42 个红球,15 个黄球,20 个绿球,14 个白球,9 个黑球。那
么至少要摸出( 66 )个球才能保证其中有 15 个球的颜色是相同的。
10、在统计学中平均数、中位数、众数都可以称为一组数据的代表,下面给出
一批数据,请挑选适当的代表。
(1)在一个 20 人的班级中,他们在某学期出勤的天数是:7 人未缺课,6 人缺课
1 天,4 人缺课 2 天,2 人缺课 3 天,1 人缺课 90 天。试确定该班学生该学期
的缺课天数。(选取:平均数)
(2)确定你所在班级中同学身高的代表,如果是为了:①体格检查,②服装推销。
(①选取:中位数②选取:众数)
(3)一个生产小组有 15 个工人,每人每天生产某零件数目分别是 6,6,7,7,
7,8,8,8,8,8,9,11,12,12,18。欲使多数人超额生产,每日生产
定额(标准日产量)就为多少?(选取:众数)
小学数学教师招聘考试试题(三)
一、填空(每空 0.5 分,共 20 分)
1、数学是研究( 数量关系 )和( 空间形式 )的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性 )、(普及性 )和(发展性 )。
义务教育的数学课程应突出体现(全面 )、(持续 )、(和谐发展 )。
3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(人人都能
获得良好的数学教育),(不同的人在数学上得到不同的发展 )。
4、学生是数学学习的(主体),教师是数学学习的( 组织者 )、( 引导者)与(合作者)。
5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数 )、(图形与几何 )、
(统计与概率)、( 综合与实践)四大领域;将数学教学目标分为(知识与技能 )、(数学与思考)、
(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程。除(接受学习 )外,(动
手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。学生应当有足够的时间和空间
经历观察、实验、猜测、(计算)、推理、(验证)等活动过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的
“四基”包括(基础知识 )、(基本技能 )、(基本思想)、( 基本活动经验);“两能”包括(发现问
题和提出问题能力)、
(分析问题和解决问题的能力)。
8、教学中应当注意正确处理:预设与(生成)的关系、面向全体学生与(关注学生个体差异 )
的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学手段多样化)的关系。
二、简答题:(每题 5 分,共 30 分)
1、义务教育阶段的数学学习的总体目标是什么?
通过义务教育阶段的数学学习,学生能:
(1). 获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本
活动经验。
(2). 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方
式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
(3). 了解数学的价值,激发好奇心,提高学习数学的兴趣,增强学好数学的信心,养成良好
的学习习惯,具有初步的创新意识和实事求是的科学态度。
2、课程标准对解决问题的要求规定为哪四个方面?
(1)初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,
发展应用意识和实践能力。
(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
(3)学会与他人合作、交流。
(4)初步形成评价与反思的意识。
3、“数感”主要表现在哪四个方面?
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面
的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
4、课程标准的教学建议有哪六个方面?
(1).数学教学活动要注重课程目标的整体实现;
(2).重视学生在学习活动中的主体地位;
(3).注重学生对基础知识、基本技能的理解和掌握;
(4).引导学生积累数学活动经验、感悟数学思想;
(5).关注学生情感态度的发展;
(6).教学中应当注意的几个关系:“预设”与“生成”的关系。面向全体学生与关注学生个体差
异的关系。合情推理与演绎推理的关系。使用现代信息技术与教学手段多样化的关系。
5、估算有哪三大特点?如何评价估算?
① 估算过程多样
② 估算方法多样
③ 估算结果多样
评价:在上述前提下,估算没有对和错之分,但有估算结果与精确计算结果的差异大小之
分。
6、可以用哪四种不同的方式确定物体所在的方向和位置?
① 上下、前后、左右
② 东、南、西、北、东南、西南、东北、西北
③数对
④ 观测点、方向、角度、距离
三、运用课程标准的新理念分析(10 分)
下面上《“1——5”的认识》的教学设计中的教学目标,请你依据课程标准对这一内容的教学
目标加以简评。
教学目标:
1、使学生会用 1——5 各数表示物体的个数,知道 1——5 的数序,能认读 1——5 各数,
建立初步的数感。
2、培养学生初步的观察能力和动手操作能力。
3、体验与同伴互相交流学习的乐趣。
4、让学生感知生活中处处有数学。
简 评:
(1)全面(知识与技能、数学思考、解决问题、情感与态度)。
(2)具体(数量、数序、数感)。
(3)准确(会用、体验、感知)。
(4)突出了学习方式的更新。
四、解答题:(每题 4 分,共 40 分)
1、6 个好朋友见面,每两人握一次手,一共握( 15 次 )手。
2、地面以上 1 层记作+1 层,地面以下 1 层记作-1 层,从+2 层下降了 9 层,所到的这一
层应该记作( -8 )层。
3、有一个整数除 300,262,205 所得的余数相同,则这个整数最大是( 19 )。
300-262=38,必然是这个数的倍数
262-205=57,也必然是这个数的倍数。
38 和 57 的最大公约数为 19
所以,这个数是 19
4、大约在 1500 年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同
笼,上有三十五头,下有九十四足,问鸡兔各几何?”鸡有( 23 )只,兔有( 12 )只。
5、某小学四、五年级的同学去参观科技展览。346 人排成两路纵队,相邻两排前后各相距
0.5 米,队伍每分钟走 65 米,现在要过一座长 629 米的桥,从排头两人上桥至排尾两个离
开桥,共需要( 11 )分钟。
6、用绳子三折量水深,水面以上部分绳长 13 米;如果绳子五折量,则水面以上部分长 3
米,那么水深是( 12 )米。
7、小玲沿某公路以每小时 4 千米速度步行上学,沿途发现每隔 9 分钟有一辆公共汽车从后
面超过她,每隔 7 分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽
车的速度相同,求公共汽车发车的间隔是( 63/8 )分钟。
8、一个合唱队共有 50 人,暑假期间有一个紧急演出,老师需要尽快通知到每一个队员。
如果用打电话的方式,每分钟通知 1 人。请你设计一个打电话的方案,最少花( 6 分钟 )
时间就能通知到每个人。
9、口袋里装有 42 个红球,15 个黄球,20 个绿球,14 个白球,9 个黑球。那么至少要摸
出( 66 )个球才能保证其中有 15 个球的颜色是相同的。
10、在统计学中平均数、中位数、众数都可以称为一组数据的代表,下面给出一批数据,
请挑选适当的代表。
(1)在一个 20 人的班级中,他们在某学期出勤的天数是:7 人未缺课,6 人缺课 1 天,4 人
缺课 2 天,2 人缺课 3 天,1 人缺课 90 天。试确定该班学生该学期的缺课天数。(选取:平
均数)
(2)确定你所在班级中同学身高的代表,如果是为了:①体格检查,②服装推销。(①选取:
中位数②选取:众数)
(3)一个生产小组有 15 个工人,每人每天生产某零件数目分别是 6,6,7,7,7,8,8,8,
8,8,9,11,12,12,18。欲使多数人超额生产,每日生产定额(标准日产量)就为多少?
(选取:众数)
小学数学教师招聘考试试题(四)
一、填空(第 14-16 小题每空 2 分,其余每空 1 分,共 28 分)
(1)503469007 读作( ),省略亿后面的尾数约是( )。
(2)814 的分数单位是( ),再加上( )个这样的分数单位就得到最小的质数。
(3)2.4 时=( 时 分) 1 米 5 分米=( )米
5.2 立方分米=( )升 1.4 平方米=( )平方分米
(4)有一个数缩小 10 倍后,小数点再向右移动两位得到的数是 5.21,原来的这个数是
( )。
(5)甲数比乙数多 25%,甲数与乙数的最简整数比是( : )。
(6)2008 年元月 30 日是星期三,这年的 3 月 6 日是星期( )。
(7)一个三角形的三个内角的度数比是 1:1:3,根据角的分类,这个三角形是( )三
角形。
(8)一个圆柱体的高是 3 厘米,侧面积是 18.84 平方厘米,这个圆柱体的底面周长是( )
厘米,体积是( )立方厘米。
(9)如果甲数为 a,乙数比甲数的 2 倍多 5,那么乙数是( )。
(10)三个连续自然数的和是 105。这三个自然数中, 最 小的是( ),最大的是
( )。
(11)A=2×3×7,B=2×2×7,A 和 B 的最大公约数是( ),最小公倍数是( )。
(12)△+□+□=44
△+△+△+□+□=64
那么 □=( ),△=( )。
(13)1、1、2、6、24、120,按照这 6 个数的排列规律,第 7 个数应该是( )。
(14)在一幅地图上用 2 厘米表示实际距离 32 千米,这幅地图的比例尺是( )。
(15)一个数增加它的 30%是 5.2,这个数是( )。
(16)陈老师把 5000 元人民币存入银行,定期为一年,年利率是 2.25%,到期他能取回利
息( )元。(利息税为 20%)
得分 评分人
二、判断(每小题 1 分,共 7 分)
(1)比 0.3 大而比 0.5 小的数只有 1 个。 ( )
(2)a 是 b 的 15 ,a 和 b 成正比例。 ( )
(3)六年级 99 人的体育成绩全部达标,六年级的体育达标率是 9
9%。 ( )
(4)学校气象小组用统计图公布一周每天气温的高低和变化情况,应选用折线统计图比较合
适。 ( )
(5)新理念下的小学数学课堂教学提倡学生“自主学习,合作交流”的学习方式。因此每一节
课都必须进行小组合作学习。 ( )
(6)《数学课程标准》提出“评价方式多样化”,这并不等于不要进行考试。
( )
(7)新一轮课改用“课程标准”代替“教学大纲”,但是教学理念、教学内容和教学要求都没改
变。 ( )
得分 评分人
三、选择(第 1-5 小题为单选题,6-8 小题为多选题,每题 1 分,共 8 分)
(1)一堆钢管,最上层有 5 根,最下层有 21 根,如果是自然堆码,这堆钢管最多能堆( )
根。
A、208 B、221 C、416 D、442
(2)把一个较大正方体切成 8 个小正方体,这些小正方体的表面积之和是较大正方体表面
积的( )倍。
A、1 B、2 C、4 D、8
(3)在除法里,被除数扩大 10 倍,除数( ),商不变。
A、缩小 10 倍 B、扩大 10 倍
C、缩小 100 倍 D、扩大 100 倍
(4)在下列各组分数中,都能化成有限小数的一组是( )。
A、318 、35 、315 ; B、512 、515 、514
C、316 、915 、58 D、3032 、812 、2045
(5)小明以每分 a 米的速度从家里去电影院看电影,以每分 b 米的速度原路返回,小明往
返的平均速度是( )。
A、(a+b)÷2 B、2÷(a+b)
C、1÷(1a +1b ) D、2÷(1a +1b )
(6)《数学课程标准》总体目标包括( )。
A、知识与技能 B、解决问题
C、数学思考 D、情感与态度
(7)义务教育阶段的数学课程应突出的是( )。
A、基础性 B、普及性 C、发展性 D、巩固性
(8)在《数学课程标准》中,特别强调有效的数学学习活动的重要方式是( )。
A、模仿和记忆 B、动手实践
C、自主探索 D、合作交流
得分 评分人
四、计算(第 1 小题 12 分,第 2 小题 4 分,第 3 小题 4 分,第 4 小题 6 分,共 26 分)
(1)脱式计算(能简算的要简算,每小题 3 分,共 12 分)
1112 ÷(59 - 14 )- 112 26.37-(15.37+ -
÷ -3.6+6.25 × ÷ [ +( - )× ]
(2)解方程或比例(4 分)
23 X-40%X=2.4 120 :X=13 :179
(3)列式计算(4 分)
①24 的 38 减去 215 的差与一个数的 60%相等.求这个数。
②212 除以 14 的商比 313 与 125 的积多多少?
(4)看图计算(6 分)
①在下图中,OA、OB 分别是小半圆的直径,且 OA⊥OB,OA=OB=6 厘米,求阴影部分
的面积。
②下图中正方形 ABCD 的边长为 4 厘米,又△DEF 的面积比△ABF 的面积多 6 ㎝ 2,求 D
E 的长。
得分 评分人
五、操作题(2 分)
(1)东村要接一根水管与送水管连通,怎么安装最省材?(画出示意图)
•东村
送水管
(2)在下面的两条平行线之间画一个与△ABC 的面积相等的平行四边形,并写出简要作法。
得分 评分人
六、应用题(25 分)
(1)一个长、宽、高分别是 8 ㎝、5 ㎝、4 ㎝的容器中,盛有 120 毫升的水。水面离容器
口还有多少厘米?
(2)某运输公司要运送 2520 吨货物去洪水重灾区,已经运了 9 天,平均每天运 120 吨,
如果剩下的要 10 天运完,平均每天要运多少吨?
(3)上午 8:30,甲乙两辆汽车同时从东西两地相向开出,甲车每小
时行 54 千米,乙车每小时行 47 千米,两车在离中点 28 千米处相遇。相遇时是什么时刻?
(4)一个书架有两层书,上层的书占总数的 40%,若从上层取 48 本放入下层,这时下层
的书就占总数的 75%。这个书架上共有多少本书?
(5)一件工程,甲独做要 20 天完成,乙独做要 30 天完成,丙独做要 40 天完成,现三人
合做,乙因其它任务中途停了几天,结果用了 12 天完成这项工程。乙中途停了几天?
得分 评分人
七、简答题(4 分)
《数学课程标准》强调教师是课堂教学的“组织者、引导者和合作者。”请谈谈你对“组织者”
的理解。
小学数学教师招聘考试试题(五)
一、填空题。(本大题共 10 个小题,每小题 2 分,共 20 分)
1、用 0—9 这十个数字组成最小的十位数是( ),四舍五入到万位,记作( )
万。
2、在一个边长为 6 厘米的正方形中剪一个最大的圆,它的周长是( )厘米,面积是
( )
3、△+□+□=44
△+△+△+□+□=64
那么 □=( ),△=( )。
4、汽车站的 1 路车 20 分钟发一次车,5 路车 15 分钟发一次车,车站在 8:00 同时发车后,
再遇到同时发车至少再过( )。
5、2/7 的分子增加 6,要使分数的大小不变,分母应增加( )。
6、有一类数,每一个数都能被 11 整除,并且各位数字之和是 20.问这类数中,最小的数是
( )
7、在 y 轴上的截距是 l,且与 x 轴平行的直线方程是( )
8、函数 的间断点为 ( )
9、设函数 , 则 ( )
10、函数 在闭区间 上的最大值为( )
二、选择题。(在每小题的 4 个备选答案中,选出一个符合题意的正确答案,并将其号码写
在题干后的括号内。本大题共 10 小题,每小题 3 分,共 30 分)
1、自然数中,能被 2 整除的数都是 ( )
A、合数 B、质数 C、偶数 D、奇数
2、下列图形中,对称轴只有一条的是
A、长方形 B、等边三角形 C、等腰三角形 D、圆
3、把 5 克食盐溶于 75 克水中,盐占盐水的
A、1/20 B、1/16 C、1/15 D、1/14
4、设三位数 2a3 加上 326,得另一个三位数 3b9.若 5b9 能被 9 整除,则 a+b 等
于
A、2 B、4 C、6 D、8
5、一堆钢管,最上层有 5 根,最下层有 21 根,如果是自然堆码,这堆钢管最多能堆( )
根。
A、208 B、221 C、416 D、442
6、“棱柱的一个侧面是矩形”是“棱柱为直棱柱” 的( )
A.充要条件 B.充分但不必要条件
C.必要但不充分条件 D.既不充分又不必要条件
7、有限小数的另一种表现形式是( )
A.十进分数 B.分数 C.真分数 D.假分数
8、 ( )
A. -2 B. 0 C. 1 D. 2
9、如果曲线 y=xf(x)d 在点(x, y)处的切线斜率与 x2 成正比,并且此曲线过点(1,-3)
和(2,11),则此曲线方程为( )。
A. y=x3-2 B. y=2x3-5 C. y=x2-2 D. y=2x2-5
10、设 A 与 B 为互不相容事件,则下列等式正确的是( )
A. P(AB)=1 B. P(AB)=0
C. P(AB)=P(A)P(B) C. P(AB)=P(A)+P(B)
三、解答题(本大题共 18 分)
(1)脱式计算(能简算的要简算)(本题满分 4 分)
[1 +(3.6-1 )÷1 ]÷0.8
(2)解答下列应用题(本题满分 4 分)
前进小学六年级参加课外活动小组的人数占全年级总人数的 48%,后来又有 4 人参加课外
活动小组,这时参加课外活动的人数占全年级的 52%,还有多少人没有参加课外活动?
(3)15.(本题满分 4 分)计算不定积分 .
(4)(本题满分 6 分)设二元函数 ,求(1) ;(2) ;(3) .
四、分析题(本大题共 1 个小题,6 分)
分析下题错误的原因,并提出相应预防措施。
“12 能被 O.4 整除”
成因:
预防措施:
五、论述题(本题满分 5 分)
举一例子说明小学数学概念形成过程。
六、案例题(本大题共两题,满分共 21 分)
1、下面是两位老师分别执教《接近整百、整千数加减法的简便计算》的片断,请你从数学
思想方法的角度进行分析。(本小题满分共 9 分)
张老师在甲班执教:1、做凑整(十、百)游戏;2、抛出算式 323+198 和 323-198,先
让学生试算,再小组内部交流,班内汇报讨论,讨论的问题是:把 198 看作什么数能使计
算简便?加上(或减去)200 后,接下去要怎么做?为什么?然后师生共同概括速算方法。……
练习反馈表明,学生错误率相当高。主要问题是:在“323+198=323+200-2”中,原来是
加法计算,为什么要减 2?在“323-198+2”中,原来是减法计算,为什么要加 2?
李老师执教乙班,给这类题目的速算方法找了一个合适的生活原型——生活实际中收付钱款
时常常发生的“付整找零”活动,以此展开教学活动。1、创设情境:王阿姨到财务室领奖金,
她口袋里原有 124 元人民币,这个月获奖金 199 元,现在她口袋里一共有多少元?让学生
来表演发奖金:先给王阿姨 2 张 100 元钞(200 元),王阿姨找还 1 元。还表演:小刚到
商场购物,买一双运动鞋要付 198 元,他给“营业员”2 张 100 元钞,“营业员”找还他 2 元。
2、将上面发奖金的过程提炼为一道数学应用题:王阿姨原有 124 元,收入 199 元,现在共
有多少元?3、把上面发奖金的过程用算式表示:124+199=124+200-1,算出结果并检
验结果是否正确。4、将上面买鞋的过程加工提炼成一道数学应用题:小刚原有 217 元,用
了 199 元,现在还剩多少元?结合表演列式计算并检验。5、引导对比,小结算理,概括出
速算的法则。……练习反馈表明,学生“知其然,也知其所以然”。
2、根据下面给出的例题,试分析其教学难点,并编写出突破难点的教学片段。(本大题共 1
个小题,共 12 分)
例:小明有 5 本故事书,小红的故事书是小明的 2 倍,小明和小红一共有多少本故事书?
-------------------------------------------------
参考答案
一、填空题。(本大题共 10 个小题,每小题 2 分,共 20 分)
1、1023456789 2、102345 3、6∏厘米、9∏平方厘米 3、17、10 4、60 分钟
5、21 6、1199 7、x=1 8、-1 9、 10、0.
二、选择题。(在每小题的 4 个备选答案中,选出一个符合题意的正确答案,并将其号码写
在题干后的括号内。本大题共 10 小题,每小题 3 分,共 30 分)
1、C 2、C 3、B 4、C 5、B 6、A 7、A 8、B 9、B 10、B
三、解答题(本大题共 18 分)
(1)脱式计算(能简算的要简算)(本题满分 4 分)
答:
[1 +(3.6-1 )÷1 ]÷0.8
= --------1 分
= ------------1 分
=
= ----------------------1 分
= ------------------------1 分
(2)解答下列应用题(本题满分 4 分)
解:全年级人数为: ------------2 分
还剩下的人数是:100-52%×100=48(人)
答:还剩下 48 人没有参加。----------------------------2 分
(3)15.(本题满分 4 分)
解:
= --------------2 分
=x- 1+x +C ---------------------------2 分
(4)(本题满分 6 分,每小题 2 分)
解:(1) =2x (2) =
(3) =(2x )dx+ dy
四、分析题(本大题满分 5 分)
成因原因:主要是(1)整除概念不清;(2)整除和除尽两个概念混淆。---2 分
预防的措施:从讲清整除的概念和整除与除尽关系和区别去着手阐述。---3 分
五、简答题(本题满分 6 分)
答:概念形成过程,在教学条件下,指从打量的具体例子出发,以学生的感性经验为基础,
形成表象,进而以归纳方式抽象出事物的本质属性,提出个种假设加以验证,从而获得初级
概念,再把这一概念的本质属性推广到同一类事物中,并用符号表示。(2 分)如以 4 的认
识为例,先是认识 4 辆拖拉机、2 根小棒、4 朵红花等,这时的数和物建立一一对应关系,
然后排除形状、颜色、大小等非本质属性,把 4 从实物中抽象出来,并用符号 4 来表示。
(4 分)
六、案例题(本大题共两题,满分共 21 分)
1、(本题满分 9 分)
分析建议:张教师主要用了抽象与概括的思想方法;李老师用了数学模型的方法,先从实际
问题中抽象出数学模型,然后通过逻辑推理得出模型的解,最后用这一模型解决实际问题。
教师可从这方面加以论述。
2、(本题满分 12 分)
教学重点:(略) ----------------4 分
教学片段(略)----------------------8 分
相关文档
- 2019年下半年中小学教师资格考试幼2021-05-1742页
- 2019年中学教师资格考试综合素质考2021-05-1716页
- 技能培训专题 造价员资格考试 市政2021-05-179页
- 技能培训专题 造价员资格考试 市政2021-05-1711页
- 注册电气工程师(发输变电)执业资格考2021-05-173页
- 四级秘书职业资格考试秘书基础知识2021-05-1756页
- 2019年银行从业资格考试题库及答案2021-05-17206页
- (财务会计)上海市会计从业资格考试《2021-05-1766页
- 10 注册电气工程师(供配电)执业资2021-05-179页
- 技能培训专题 注册安全工程师执业2021-05-1711页