- 153.00 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
[基础达标]
1.(2019·台州市高考模拟)已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为( )
A.0 B.1
C.0或1 D.无数个
解析:选A.因为g(x)=xf(x)+1(x>0),g′(x)=xf′(x)+f(x)>0,所以g(x)在(0,+∞)上单调递增,因为g(0)=1,y=f(x)为R上的连续可导函数,所以g(x)为(0,+∞)上的连续可导函数,g(x)>g(0)=1,所以g(x)在(0,+∞)上无零点.
2.(2019·丽水模拟)设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为________.
解析:(构造法)若x=0,则不论a取何值,f(x)≥0显然成立;
当x>0时,即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥-.
设g(x)=-,则g′(x)=,
所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)max=g=4,从而a≥4.
当x<0时,即x∈[-1,0)时,同理a≤-.
g(x)在区间[-1,0)上单调递增,
所以g(x)min=g(-1)=4,
从而a≤4,综上可知a=4.
答案:4
3.已知函数f(x)=(2-a)(x-1)-2ln x(a∈R).
(1)当a=1时,求f(x)的单调区间;
(2)若函数f(x)在上无零点,求a的取值范围.
解:(1)当a=1时,f(x)=x-1-2ln x,
则f′(x)=1-=,
由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,
故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
(2)因为f(x)<0在区间上恒成立不可能,
故要使函数f(x)在上无零点,
只要对任意的x∈,f(x)>0恒成立,
即对x∈,a>2-恒成立.
令h(x)=2-,x∈,
则h′(x)=,
再令m(x)=2ln x+-2,x∈,
则m′(x)=<0,
故m(x)在上为减函数,
于是,m(x)>m=4-2ln 3>0,
从而h′(x)>0,于是h(x)在上为增函数,
所以h(x)<h=2-3ln 3,
所以a的取值范围为[2-3ln 3,+∞).
4.(2019·嵊州市第二次高考适应性考试)已知函数f(x)=x2+,x∈(0,1].
(1)求f(x)的极值点;
(2)证明:f(x)>+.
解:(1)f′(x)=2x-.
令f′(x)=0,解得x=∈(0,1].
当0<x<时,f′(x)<0,此时f(x)单调递减;
当<x≤1时,f′(x)>0,此时f(x)单调递增,
所以,f(x)有极小值点x=,但不存在极大值点.
(2)证明:设F(x)=f(x)-,x∈(0,1],则F′(x)=2x--=,
设t=()3,则方程4x3-()3-2=4t2-t-2=0在区间t∈(0,1)内恰有一个实根.
设方程4x3-()3-2=0在区间(0,1)内的实根为x0,即x=.
所以,当0<x<x0时,F′(x)<0,此时F(x)单调递减;
当x0<x≤1时,F′(x)>0,此时F(x)单调递增.
所以[F(x)]min=F(x0)=x+-==-+.
由y=-+在(0,1]上是减函数知,-+>-×1+=,故[F(x)]min>.
综上:f(x)>+.
5.
函数f(x)=x3+ax2+bx+c(a,b,c∈R)的导函数的图象如图所示:
(1)求a,b的值并写出f(x)的单调区间;
(2)若函数y=f(x)有三个零点,求c的取值范围.
解:(1)因为f(x)=x3+ax2+bx+c,
所以f′(x)=x2+2ax+b.
因为f′(x)=0的两个根为-1,2,
所以解得a=-,b=-2,
由导函数的图象可知,当-1<x<2时,f′(x)<0,函数单调递减,
当x<-1或x>2时,f′(x)>0,函数单调递增,
故函数f(x)在(-∞,-1)和(2,+∞)上单调递增,在(-1,2)上单调递减.
(2)由(1)得f(x)=x3-x2-2x+c,
函数f(x)在(-∞,-1),(2,+∞)上是增函数,在(-1,2)上是减函数,
所以函数f(x)的极大值为f(-1)=+c,
极小值为f(2)=c-.
而函数f(x)恰有三个零点,故必有
解得-<c<.
所以使函数f(x)恰有三个零点的实数c的取值范围是.
6.(2019·浙江金华十校第二学期调研)设函数f(x)=ex-x,h(x)=-kx3+kx2-x+1.
(1)求f(x)的最小值;
(2)设h(x)≤f(x)对任意x∈[0,1]恒成立时k的最大值为λ,证明:4<λ<6.
解:(1)因为f(x)=ex-x,所以f′(x)=ex-1,
当x∈(-∞,0)时,f′(x)<0,f(x)单调递减,
当x∈(0,+∞)时,f′(x)>0,f(x)单调递增,
所以f(x)min=f(0)=1.
(2)证明:由h(x)≤f(x),化简可得k(x2-x3)≤ex-1,
当x=0,1时,k∈R,
当x∈(0,1)时,k≤,
要证:4<λ<6,则需证以下两个问题;
①>4对任意x∈(0,1)恒成立;
②存在x0∈(0,1),使得<6成立.
先证:①>4,即证ex-1>4(x2-x3),
由(1)可知,ex-x≥1恒成立,所以ex-1≥x,
又x≠0,所以ex-1>x,
即证x≥4(x2-x3)⇔1≥4(x-x2)⇔(2x-1)2≥0,
(2x-1)2≥0,显然成立,
所以>4对任意x∈(0,1)恒成立;
再证②存在x0∈(0,1),使得<6成立.
取x0=,=8(-1),因为<,
所以8(-1)<8×=6,
所以存在x0∈(0,1),使得<6,
由①②可知,4<λ<6.
[能力提升]
1.(2019·杭州市学军中学高考模拟)已知函数f(x)=ax3-bx2+x(a,b∈R).
(1)当a=2,b=3时,求函数f(x)极值;
(2)设b=a+1,当0≤a≤1时,对任意x∈[0,2],都有m≥|f′(x)|恒成立,求m的最小值.
解:(1)当a=2,b=3时,f(x)=x3-x2+x,
f′(x)=2x2-3x+1=(2x-1)(x-1),
令f′(x)>0,解得:x>1或x<,
令f′(x)<0,解得:<x<1,
故f(x)在(-∞,)单调递增,在(,1)单调递减,在(1,+∞)单调递增,
故f(x)极大值=f()=,f(x)极小值=f(1)=.
(2)当b=a+1时,f(x)=ax3-(a+1)x2+x,
f′(x)=ax2-(a+1)x+1,f′(x)恒过点(0,1).
当a=0时,f′(x)=-x+1,
m≥|f′(x)|恒成立,所以m≥1;
0<a≤1,开口向上,对称轴≥1,
f′(x)=ax2-(a+1)x+1=a(x-)2+1-,
①当a=1时f′(x)=x2-2x+1,|f′(x)|在x∈[0,2]的值域为[0,1];
要m≥|f′(x)|,则m≥1;
②当0<a<1时,
根据对称轴分类:
当x=<2,即<a<1时,
Δ=(a-1)2>0,f′()=-(a+)∈(-,0),
又f′(2)=2a-1<1,所以|f′(x)|≤1;
当x=≥2,即0<a≤;
f′(x)在x∈[0,2]的最小值为f′(2)=2a-1;
-1<2a-1≤-,所以|f′(x)|≤1,
综上所述,要对任意x∈[0,2]都有m≥|f′(x)|恒成立,有m≥1.所以m的最小值为1.
2.(2019·台州市高考模拟)已知函数f(x)=x3+ax2+bx(a,b∈R).
(1)若函数f(x)在(0,2)上存在两个极值点,求3a+b的取值范围;
(2)当a=0,b≥-1时,求证:对任意的实数x∈[0,2],|f(x)|≤2b+恒成立.
解:(1)f′(x)=x2+ax+b,
由已知可得f′(x)=0在(0,2)上存在两个不同的零点,
故有,即
令z=3a+b,
如图所示:
由图可知-8<z<0,
故3a+b的取值范围(-8,0).
(2)证明:f(x)=x3+bx(b≥-1,x∈[0,2]),所以f′(x)=x2+b,
当b≥0时,f′(x)≥0在[0,2]上恒成立,则f(x)在[0,2]上单调递增,
故0=f(0)≤f(x)≤f(2)=2b+,所以|f(x)|≤2b+;
当-1≤b<0时,由f′(x)=0,解得x=∈(0,2),
则f(x)在[0,]上单调递减,在[,2]上单调递增,所以f()≤f(x)≤max{f(0),f(2)}.
因为f(0)=0,f(2)=2b+>0,f()=b<0,
要证|f(x)|≤2b+,只需证-b≤2b+,
即证-b(+3)≤4,
因为-1≤b<0,所以0<-b≤1,3<+3≤4,
所以-b(+3)≤4成立.
综上所述,对任意的实数x∈[0,2],|f(x)|≤2b+恒成立.