• 265.50 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教版(理)第10章第4讲随机事件的概率作业

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
A组 基础关 ‎1.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是(  )‎ A.① B.②④ C.③ D.①③‎ 答案 C 解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.‎ ‎2.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,则事件“甲分得红牌”与“乙分得红牌”(  )‎ A.是对立事件 B.是不可能事件 C.是互斥事件但不是对立事件 D.不是互斥事件 答案 C 解析 “甲分得红牌”与“乙分得红牌”不会同时发生,但可能都不发生,所以这两个事件互斥但不对立.‎ ‎3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是(  )‎ A. B. ‎ C. D.1‎ 答案 C 解析 因为从中取出2粒都是黑子的概率为,都是白子的概率是 ‎,所以从中任意取出2粒恰好是同一色的概率为+=.‎ ‎4.(2019·石家庄模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为(  )‎ A.0.95 B.‎0.97 C.0.92 D.0.08‎ 答案 C 解析 记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.‎ ‎5.容量为20的样本数据,分组后的频数如下表:‎ 则样本数据落在区间[10,40)的频率为(  )‎ A.0.45 B.‎0.5 C.0.75 D.0.8‎ 答案 A 解析 数据落在区间[10,40)的频率为==0.45.‎ ‎6.(2018·广西钦州期中)根据某医疗研究所的调查,某地区居民血型的分布为O型50%,A型15%,B型30%,AB型5%.现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为(  )‎ A.15% B.20% C.45% D.65%‎ 答案 D 解析 因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%.故选D.‎ ‎7.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A∪发生的概率为(  )‎ A. B. ‎ C. D. 答案 C 解析 掷一个骰子的试验有6种可能结果.依题意P(A)==,P(B)==,∴P()=1-P(B)=1-=.∵表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A∪)=P(A)+P()=+=.‎ ‎8.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率为________,断头超过两次的概率为________.‎ 答案 0.97 0.03‎ 解析 断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.‎ ‎9.如果事件A与B是互斥事件,且事件A∪B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为________.‎ 答案 0.16‎ 解析 设P(A)=x,则P(B)=3x,又P(A∪B)=P(A)+P(B)=x+3x=0.64,所以x=0.16,则P(A)=0.16.‎ ‎10.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.‎ 答案   解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C“取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P(C)=+=.‎ ‎(2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=.‎ B组 能力关 ‎1.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是(  )‎ A.A∪B与C是互斥事件,也是对立事件 B.B∪C与D是互斥事件,也是对立事件 C.A∪C与B∪D是互斥事件,但不是对立事件 D.A与B∪C∪D是互斥事件,也是对立事件 答案 D 解析 由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.‎ ‎2.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=‎4a-5,则实数a的取值范围是(  )‎ A. B. C. D. 答案 D 解析 由题意可得 即解得