• 109.00 KB
  • 2021-06-16 发布

【数学】2021届一轮复习人教A版利用导数研究函数的极值最值作业

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第12节 利用导数研究函数的极值、最值 ‎1.(2019·沈阳市一模)设函数f(x)=xex+1,则(   )‎ A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点 解析:D [由于f(x)=xex+1,可得 f′(x)=(x+1)ex,‎ 令f′(x)=(x+1)ex=0可得x=-1,‎ 令f′(x)=(x+1)ex>0可得x>-1,即函数在(-1,+∞)上是增函数,令f′(x)=(x+1)ex<0可得x<-1,即函数在(-∞,-1)上是减函数,所以x=-1为f(x)的极小值点.]‎ ‎2.函数f(x)=x2-ln x的最小值为(  )‎ A.       B.1‎ C.0 D.不存在 解析:A [f′(x)=x-=,且x>0.令f′(x)>0,得x>1; 令f′(x)<0,得00恒成立.‎ 令f′(x)=0,解得x=1,故当x∈[-2,1)时,g′(x)<0;当x∈(1,+∞)时,g′(x)>0,故f(x)在[-2,1)上是减函数,在(1,+∞)上是增函数.‎ 所以f(x)min=g(1)=1-3+3-=1-,故选A.]‎ ‎5.已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)的极大值与极小值之差为________.‎ 解析:因为y′=3x2+6ax+3b,‎ ⇒ 所以y′=3x2-6x,令3x2-6x=0,则x=0或x=2.‎ 所以f(x)极大值-f(x)极小值=f(0)-f(2)=4.‎ 答案:4‎ ‎6.直线y=a与函数f(x)=x3-3x的图象有相异的三个公共点,则a的取值范围是________.‎ 解析:令f′(x)=3x2-3=0,得x=±1,可得极大值为f(-1)=2,极小值为f(1)=-2,如图,观察得-20,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减,‎ 所以x=1是f(x)的极大值点.‎ ‎②若a<0,由f′(x)=0,得x=1或x=-.‎ 因为x=1是f(x)的极大值点,所以->1,解得-1-1.‎ 答案:a>-1 ‎ ‎9.已知函数f(x)=x-1+(a∈R,e为自然对数的底数).‎ ‎(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;‎ ‎(2)求函数f(x)的极值.‎ 解:(1)由f(x)=x-1+,得f′(x)=1-.‎ 又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,‎ 得f′(1)=0,即1-=0,解得a=e.‎ ‎(2)f′(x)=1-,‎ ‎①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.‎ ‎②当a>0时,令f′(x)=0,得ex=a,即x=ln a.‎ x∈(-∞,ln a)时,f′(x)<0;‎ x∈(ln a,+∞)时,f′(x)>0,‎ 所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故f(x)在x=ln a 处取得极小值,‎ 且极小值为f(ln a)=ln a,无极大值.‎ 综上,当a≤0时,函数f(x)无极值;‎ 当a>0时,f(x)在x=ln a处取得极小值ln a,无极大值.‎ ‎10.(2019·银川市模拟)已知函数f(x)=ax-1-ln x(a∈R).‎ ‎(1)讨论函数f(x)的定义域内的极值点的个数;‎ ‎(2)若函数f(x)在x=1处取得极值,∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的最大值.‎ 解:(1)f(x)的定义域为(0,+∞).f′(x)=a-=‎ .‎ 当a≤0时,f′(x)≤0在 (0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减.f(x)在(0,+∞)上没有极值点.‎ 当a>0时,由f′(x)>0得x>,‎ 所以,f(x)在上递减,在上递增,即f(x)在x=处有极小值.‎ 综上,当a≤0时,f(x)在(0,+∞)上没有极值点;‎ 当a>0时,f(x)在(0,+∞)上有一个极值点.‎ ‎(2)∵函数f(x)在x=1处取得极值,‎ f′(1)=a-1=0,则a=1,从而f(x)=x-1-ln x.‎ 因此f(x)≥bx-2,即1+-≥b,‎ 令g(x)=1+-,则g′(x)=,‎ 由g′(x)≥0得x≥e2,‎ 则g(x)在(0,e2)上递减,在(e2,+∞)上递增,‎ g(x)min=g(e2)=1-,故实数b的最大值是1-.‎