- 126.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(二十八) 平面向量的概念及其线性运算
一抓基础,多练小题做到眼疾手快
1.已知O,A,B是同一平面内的三个点,直线AB上有一点C满足2+=0,则=( )
A.2- B.-+2
C.- D.-+
解析:选A 依题意,得=+=+2=+2(-),所以=2-.
2.(2019·石家庄质检)在△ABC中,点D在边AB上,且=,设=a,=b,则=( )
A.a+b B.a+b
C.a+b D.a+b
解析:选B ∵=,∴=,∴=+=+=+(-)=+=a+b.
3.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是( )
A.矩形 B.平行四边形
C.梯形 D.以上都不对
解析:选C 由已知,得=++=-8a-2b=2(-4a-b)=2,故∥.
又因为与不平行,所以四边形ABCD是梯形.
4.(2018·扬州模拟)在△ABC中,N是AC边上一点且=,P是BN上一点,若=m+,则实数m的值是________.
解析:如图,因为=,P是上一点.所以=,=m+=m+,因为B,P,N三点共线,所以m+=1,则m=.
答案:
5.在△ABC中,∠A=60°,∠A的平分线交BC于点D,若AB=4,且=+λ (λ∈R),则AD的长为________.
解析:因为B,D,C三点共线,所以+λ=1,解得λ=,如图,过点D分别作AC,AB的平行线交AB,AC于点M,N,则=,=,因为在△ABC中,∠A=60°,∠A的平分线交BC于点D,所以四边形ANDM为菱形,因为AB=4,所以AN=AM=3,AD=3.
答案:3
二保高考,全练题型做到高考达标
1.已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( )
A.A,B,D B.A,B,C
C.B,C,D D.A,C,D
解析:选A =++=3a+6b=3.因为与有公共点A,所以A,B,D三点共线.
2.已知向量a,b不共线,且c=λa+b,d=a+(2λ-1)b,若c与d共线反向,则实数λ的值为( )
A.1 B.-
C.1或- D.-1或-
解析:选B 由于c与d共线反向,则存在实数k使c=kd(k<0),于是λa+b=
k [a+(2λ-1)b].
整理得λa+b=ka+(2λk-k)b.
由于a,b不共线,所以有
整理得2λ2-λ-1=0,解得λ=1或λ=-.
又因为k<0,所以λ<0,故λ=-.
3.(2019·浙江六校联考)在平行四边形ABCD中,点E为CD的中点,BE与AC的交点为F,设=a,=b,则向量=( )
A.a+b B.-a-b
C.-a+b D.a-b
解析:选C 如图,因为点E为CD的中点,CD∥AB,所以==2,所以==(+)==-a+b.
4.(2018·遂昌期初)已知a,b是两个不共线的非零向量,且起点在同一点上,若a,tb,(a+b)三向量的终点在同一直线上,则实数t的值为( )
A.2 B.1
C. D.
解析:选D 由题可设(a+b)=λa+μtb,因为a,tb,(a+b)三向量的终点在同一直线上,所以有λ+μ=1.所以=λ,μ=,所以=t,解得t=.
5.(2019·丹东五校协作体联考)P是△ABC所在平面上的一点,满足++=2,若S△ABC=6,则△PAB的面积为( )
A.2 B.3
C.4 D.8
解析:选A ∵++=2=2(-),∴3=-=,∴∥,且方向相同,∴===3,
∴S△PAB==2.
6.已知O为△ABC内一点,且2=+,=t,若B,O,D三点共线,则t的值为________.
解析:设线段BC的中点为M,则+=2.
因为2=+,所以=,
则==(+)==+.
由B,O,D三点共线,得+=1,解得t=.
答案:
7.设点M是线段BC的中点,点A在直线BC外,2=16,|+|=|-|,则||=________.
解析:由|+|=|-|可知,⊥,
则AM为Rt△ABC斜边BC上的中线,
因此,||=||=2.
答案:2
8.已知D,E,F分别为△ABC的边BC,CA,AB的中点,且=a,=b,给出下列命题:①=a-b;②=a+b;③=-a+b;④++=0.
其中正确命题的个数为________.
解析:=a,=b,=+=-a-b,故①错;
=+=a+b,故②正确;
=(+)=(-a+b)=-a+b,故③正确;
++=-b-a+a+b+b-a=0,故④正确.
∴正确命题为②③④.
答案:3
9.设e1,e2是两个不共线的向量,已知=2e1-8e2,=e1+3e2,=2e1-e2.
(1)求证:A,B,D三点共线;
(2)若=3e1-ke2,且B,D,F三点共线,求k的值.
解:(1)证明:由已知得=-=(2e1-e2)-(e1+3e2)=e1-4e2,
∵=2e1-8e2,
∴=2.
又∵与有公共点B,
∴A,B,D三点共线.
(2)由(1)可知=e1-4e2,
∵=3e1-ke2,且B,D,F三点共线,
∴=λ (λ∈R),
即3e1-ke2=λe1-4λe2,
得
解得k=12.
10.已知a,b不共线,=a,=b,=c,=d,OE―→=e,设t∈R,如果3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若存在,求出实数t的值,若不存在,请说明理由.
解:由题设知,=d-c=2b-3a,=e-c=(t-3)a+tb,C,D,E三点在一条直线上的充要条件是存在实数k,使得=k,即(t-3)a+tb=-3ka+2kb,
整理得(t-3+3k)a=(2k-t)b.
因为a,b不共线,所以有解得t=.
故存在实数t=使C,D,E三点在一条直线上.
三上台阶,自主选做志在冲刺名校
1.如图,在△ABC中,点D在线段BC上,且满足BD=DC,过点D的直线分别交直线AB,AC于不同的两点M,N,若=m,=n,则( )
A.m+n是定值,定值为2
B.2m+n是定值,定值为3
C.+是定值,定值为2
D.+是定值,定值为3
解析:选D 因为M,D,N三点共线,所以=λ+(1-λ).又=m,=n,所以=λm+(1-λ)n.又=,所以-=-,所以=+.比较系数知λm=,(1-λ)n=,所以+=3,故选D.
2.(2019·长沙模拟)在平行四边形ABCD中,M为BC的中点.若=λ+μ,则λ-μ=________.
解析:如图,在平行四边形ABCD中,=,所以=
+=+=+(-)=+(-)=+-,所以=+,所以=+,所以λ=,μ=,
所以λ-μ=.
答案:
3.已知O,A,B是不共线的三点,且=m+n (m,n∈R).
(1)若m+n=1,求证:A,P,B三点共线;
(2)若A,P,B三点共线,求证:m+n=1.
证明:(1)若m+n=1,
则=m+(1-m)=+m(-),
∴-=m(-),
即=m,∴与共线.
又∵与有公共点B,
∴A,P,B三点共线.
(2)若A,P,B三点共线,
则存在实数λ,使=λ,
∴-=λ(-).
又=m+n.
故有m+(n-1)=λ-λ,
即(m-λ)+(n+λ-1)=0.
∵O,A,B不共线,∴,不共线,
∴∴m+n=1.