- 166.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(二十八) 平面向量基本定理及坐标表示
[A级 基础题——基稳才能楼高]
1.(2019·内江模拟)下列各组向量中,可以作为基底的是( )
A.e1=(0,0),e2=(1,2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=
解析:选B A选项中,零向量与任意向量都共线,故其不可以作为基底;B选项中,不存在实数λ,使得e1=λe2,故两向量不共线,故其可以作为基底;C选项中,e2=2e1,两向量共线,故其不可以作为基底;D选项中,e1=4e2,两向量共线,故其不可以作为基底.故选B.
2.(2019·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.
3.(2019·天津六校期中联考)已知向量a=(1,2),a-b=(4,5),c=(x,3),若(2a+b)∥c,则x=( )
A.-1 B.-2
C.-3 D.-4
解析:选C ∵a=(1,2),a-b=(4,5),∴b=a-(a-b)=(1,2)-(4,5)=(-3,-3),∴2a+b=2(1,2)+(-3,-3)=(-1,1).又∵c=(x,3),(2a+b)∥c,∴-1×3-x=0,∴x=-3.故选C.
4.(2019·兰州模拟)已知向量a=(1-sin θ,1),b=,若a∥b,则锐角θ=( )
A. B.
C. D.
解析:选B 因为a∥b,所以(1-sin θ)×(1+sin θ)-1×=0,得sin2θ=,
所以sin θ=±,故锐角θ=.
5.(2019·福建莆田二十四中期中)在平行四边形ABCD中,AC与BD交于点O,F
是线段DC上的点.若DC=3DF,设=a,=b,则=( )
A.a+b B.a+b
C.a+b D.a+b
解析:选B 如图所示,平行四边形ABCD中,AC与BD交于点O,F是线段DC上的点,且DC=3DF,
∴==(-)=(-),=-= +.则=+=+(-)=+=a+ b.故选B.
[B级 保分题——准做快做达标]
1.(2019·福州期末)已知a=(1,2),b=(-1,1),c=2a-b,则|c|=( )
A. B.3
C. D.
解析:选B ∵a=(1,2),b=(-1,1),∴c=2a-b=(3,3),∴|c|==3,故选B.
2.(2019·长沙一模)已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k的值是( )
A.- B.
C. D.
解析:选A =-=(4-k,-7),=-=(-2k,-2).∵A,B,C三点共线,∴,共线,∴-2×(4-k)=-7×(-2k),解得k=-.
3.(2019·丹东五校协作体联考)向量a=,b=(cos α,1),且a∥b,则cos 2α=( )
A. B.-
C. D.-
解析:选C ∵a∥b,a=,b=(cos α,1),∴-tan α·cos α=0,∴sin α=,∴cos 2α=1-2sin2α=1-2×2=.故选C.
4.(2019·深圳模拟)如图,在正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=( )
A. B.
C. D.2
解析:选B 以点A为坐标原点,分别以,的方向为x,y轴的正方向,建立平面直角坐标系.设正方形的边长为2,则A(0,0),C(2,2),M(2,1),B(2,0),D(0,2),所以=(2,2),=(2,1),=(-2,2),所以λ+μ=(2λ-2μ,λ+2μ),因为=λ+μ,所以解得所以λ+μ=.故选B.
5.(2019·邹城期中)在△ABC所在平面上有三点P,Q,R,满足++=,++=,++=,则△PQR的面积与△ABC的面积之比是( )
A.1∶2 B.1∶3
C.1∶4 D.1∶5
解析:选B 由++=,得+=-+,即+=+=,
∴=2,则P为线段AC的一个三等分点,同理可得Q,R的位置.
∴△PQR的面积为△ABC的面积减去三个小三角形面积.设△ABC的内角A,B,C所对的边分别是a,b,c,则S△PQR=S△ABC-××bsin A+×c×sin B+×a×sin C=S△ABC-×3S△ABC=S△ABC,∴△PQR与△ABC的面积比为1∶3.故选B.
6.已知平面直角坐标系内的两个向量a=(m,3m-4),b=(1,2),且平面内的任意向量c都可以唯一地表示成c=λa+μb(λ,μ为实数),则m的取值范围是( )
A.(-∞,4) B.(4,+∞)
C.(-∞,4)∪(4,+∞) D.(-∞,+∞)
解析:选C 平面内的任意向量c都可以唯一地表示成c=λa+μb,由平面向量基本定理可知,向量a,b可作为该平面所有向量的一组基底,即向量a,b是不共线向量.又因为a=(m,3m-4),b=(1,2),则m×2-(3m-4)×1≠0,即m≠4,所以m的取值范围为(-∞,4)∪(4,+∞).
7.(2019·淮南一模)已知G是△ABC的重心,过点G作直线MN与AB,AC分别交于点M,N,且=x,=y (x,y>0),则3x+y的最小值是( )
A. B.
C. D.+
解析:选D 如图.=,=,又∵=+,∴=+,又∵M,G,N三点共线,∴+=1.∵x>0,y>0,∴3x+y=(3x+y)·=1+++≥+.当且仅当y=x时取等号.故选D.
8.在平面直角坐标系xOy中,已知A(1,0),B(0,1),C为坐标平面内第一象限内一点且∠AOC=,||=2,若=λ+μ,则λ+μ=( )
A.2 B.
C.2 D.4
解析:选A 因为||=2,∠AOC=,所以C(,),又=λ+μ,所以(,)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=,λ+μ=2.
9.如图,A,B,C是圆O上的三点,CO的延长线与线段BA的延长线交于圆O外一点D,若=m+n,则m+n的取值范围是( )
A.(0,1) B.(1,+∞)
C.(-∞,-1) D.(-1,0)
解析:选D 由点D是圆O外一点,可设=λ (λ>1),则=+λ=λ
+(1-λ).又C,O,D三点共线,令=-μ (μ>1),则=--· (λ>1,μ>1),所以m=-,n=-,则m+n=--=-∈(-1,0).
10.(2019·福清校际联盟期中)已知向量a=(1,2),b=(3,4),则a+b=________.
解析:a+b=(1,2)+(3,4)=(4,6).
答案:(4,6)
11.如图,在△ABC中,已知-=,点P在线段BN上,若=λ+,则实数λ的值为________.
解析:-=可化为=,即=,因为=λ+,所以=λ+.由B,P,N三点共线可得λ=.
答案:
12.已知点A(2,3),B(4,5),C(7,10),若=+λ (λ∈R),且点P在直线x-2y=0上,则λ的值为________.
解析:设P(x,y),则由=+λ,得(x-2,y-3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x=5λ+4,y=7λ+5.又点P在直线x-2y=0上,故5λ+4-2(7λ+5)=0,解得λ=-.
答案:-
13.如图,O点在△ABC的内部,E是BC边的中点,且有+2+3=0,则△AEC的面积与△AOC的面积的比为________.
解析:取AC的中点D,连接OE,OD.因为D,E分别是AC,BC边的中点,所以+=2,+=2,因为+2+3=0,所以2
+4=0,所以O,D,E三点共线,且=.又因为△AEC与△AOC都以AC为底,所以△AEC的面积与△AOC的面积的比为3∶2.
答案:3∶2
14.如图,AB是圆O的直径,C,D是圆O上的点,∠CBA=60°,∠ABD=45°,=x+y,求x+y的值.
解:不妨设圆O的半径为1,
则A(-1,0),B(1,0),D(0,1),C,
所以=,
=.
又=x+y,
所以
=x(-1,0)+y.
所以
解之得
所以x+y=-=-.
15.已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c,且=3c,=-2b.
(1)求3a+b-3c;
(2)求满足a=mb+nc的实数m,n;
(3)求M,N的坐标及向量的坐标.
解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).
(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)
=(15-6-3,-15-3-24)=(6,-42).
(2)因为mb+nc=(-6m+n,-3m+8n),
所以解得
(3)设O为坐标原点,因为=-=3c,
所以=3c+=(3,24)+(-3,-4)=(0,20).
所以M(0,20).又因为=-=-2b,
所以=-2b+=(12,6)+(-3,-4)=(9,2),
所以N(9,2).所以=(9,-18).