• 44.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教B版渐开线与摆线作业

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一、选择题 ‎1.关于渐开线和摆线的叙述,正确的是(  )‎ A.只有圆才有渐开线 B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形 C.正方形也可以有渐开线 D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 解析:选C 本题主要考查渐开线和摆线的基本概念.不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线,渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同.对于同一个圆不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同.‎ ‎2.(φ为参数)表示的是(  )‎ A.半径为5的圆的渐开线的参数方程 B.半径为5的圆的摆线的参数方程 C.直径为5的圆的渐开线的参数方程 D.直径为5的圆的摆线的参数方程 解析:选B 根据圆的渐开线与摆线的参数方程可知B正确.‎ ‎3.已知一个圆的参数方程为(φ为参数),那么圆的摆线方程中参数取对应的点A与点B之间的距离为(  )‎ A.-1        B. C. D. 解析:选C 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为(φ为参数),‎ 把φ=代入参数方程中可得 即A.‎ ‎∴|AB|==.‎ ‎4.已知一个圆的摆线过点(1,0),则摆线的参数方程为(  )‎ A. ‎ B. C. ‎ D. 解析:选A 圆的摆线的参数方程为 令r(1-cos φ)=0,得:φ=2kπ,代入x=r(φ-sin φ),‎ 得:x=r(2kπ-sin 2kπ),又过(1,0),‎ ‎∴r(2kπ-sin 2kπ)=1,∴r=,‎ 又r>0,∴k∈N+.‎ 二、填空题 ‎5.已知圆的渐开线的参数方程是(φ为参数),则此渐开线对应的基圆的直径是________,当参数φ=时对应的曲线上的点的坐标为________.‎ 解析:圆的渐开线的参数方程由圆的半径惟一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=时对应的坐标只需把φ=代入曲线的参数方程,得x=+,y=-,由此可得对应的坐标为+,-.‎ 答案:2 +,- ‎6.我们知道关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为________.‎ 解析:关于直线y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换,所以要写出摆线方程关于y=x对称的曲线方程,只需把其中的x,y互换.‎ 答案:(φ为参数)‎ ‎7.渐开线(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________________.‎ 解析:根据圆的渐开线方程可知基圆的半径r=6,其方程为x2+y2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为2+y2=36,整理可得+=1,这是一个焦点在x轴上的椭圆.c===6,故焦点坐标为(6,0)和(-6,0).‎ 答案:(6,0)和(-6,0)‎ ‎8.圆的渐开线上与t=对应的点的直角坐标为________.‎ 解析:对应点的直角坐标为 ‎∴t=对应的点的直角坐标为1+,1-.‎ 答案: 三、解答题 ‎9.半径为r的圆沿直轨道滚动,M在起始处和原点重合,当M转过π和π时,求点M的坐标.‎ 解:由摆线方程可知:‎ φ=π时,xM=r,yM=r;‎ φ=π时,xM=r(7π+2),yM=r.‎ ‎∴点M的坐标分别是,r、r(7π+2),r.‎ ‎10.‎ 如图ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中AE、EF、FG、GH…的圆心依次按B、C、D、A循环,它们依次相连接,求曲线AEFGH的长.‎ 解:根据渐开线的定义可知,是半径为1的圆周长,长度为,继续旋转可得是半径为2的圆周长,长度为π;是半径为3的圆周长,‎ 长度为;是半径为4的圆周长,长度为2π.所以曲线AEFGH的长是5π.‎ ‎11.已知圆C的参数方程是(α为参数),直线l的普通方程是x-y-6=0.‎ ‎(1)如果把圆心平移到原点O,请问平移后圆和直线有什么关系?‎ ‎(2)写出平移后圆的摆线方程;‎ ‎(3)求摆线和x轴的交点.‎ 解:(1)圆C平移后圆心为O(0,0),它到直线x-y-6=0的距离为d==6,恰好等于圆的半径,所以直线和圆是相切的.‎ ‎(2)由于圆的半径是6,所以可得摆线方程是 (φ为参数).‎ ‎(3)令y=0,得6-6cos φ=0⇒cos φ=1,所以φ=2kπ(k∈Z).代入x=6φ-6sin φ,得x=12kπ(k∈Z),即圆的摆线和x轴的交点为(12kπ,0)(k∈Z).‎