• 34.39 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教A版第47课椭圆的几何性质作业(江苏专用)

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
随堂巩固训练(47)‎ ‎ 1. 已知椭圆+=1(a>b>0)的两个焦点分别为F1,F2,点P在椭圆上,使△OPF1为正三角形,则椭圆的离心率为__-1__.‎ 解析:设F1为椭圆的左焦点,则由题意得,点P横坐标为-,所以点P到左准线的距离d=-=.因为△OPF1的边长为c,所以e====,解得e=-1或e=--1(舍去),故椭圆的离心率为-1.‎ ‎ 2. 已知椭圆+y2=1的两个焦点分别为F1,F2,过点F1作垂直于x轴的直线与椭圆相交,一个交点为P,则PF2=____.‎ 解析:由题意知,a2=4,b2=1,所以c2=a2-b2=3,不妨设F1(-,0),将x=-代入椭圆的方程可得+y2=1,所以y=±,所以PF1=,PF2=2a-PF1=4-=.‎ ‎ 3. 过椭圆+=1(a>b>0)的右焦点F2作x轴的垂线交椭圆于点P,F1为左焦点,若△F1PF2为等腰直角三角形,则椭圆的离心率为__-1__.‎ 解析:由题意可得PF2=F1F2=2c,则PF1=2c,所以2c+2c=2a,即(2+2)c=2a,e==-1.‎ ‎ 4. 若椭圆+=1的离心率为,则实数m的值为__4或-__.‎ 解析:若焦点在x轴上,则8+m>9,即m>1,a=,b=3,则c==,所以e===,解得m=4;若焦点在y轴上,则8+m<9,即m<1,a=3,b=,则c==,所以e===,解得m=-.故实数m的值为4或-.‎ ‎ 5. 已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆的方程为__+=1或+=1__.‎ 解析:由题意得2a=12,即a=6.因为离心率为,所以c=2,所以b2=36-4=32.当焦点在x轴上时,椭圆的方程为+=1;当焦点在y轴上时,椭圆的方程为+=1.‎ ‎ 6. 如图,已知P是以F1,F2为焦点的椭圆+=1(a>b>0)上一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率是____.‎ 解析:由题意可知△PF1F2为直角三角形,设PF1=m,因为tan∠PF1F2=,所以PF2=,F1F2=m,所以e===.‎ ‎ 7. 焦点在x轴上的椭圆的一个焦点到长轴两个端点的距离之比为,短轴长为8,则椭 圆的标准方程为__+=1__.‎ 解析:由题意可得,2b=8,=,a2-b2=c2,解得a=5,b=4,c=3.因为椭圆焦点在x轴上,所以椭圆方程为+=1.‎ ‎ 8. 已知椭圆+y2=1的左、右焦点分别为F1,F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线,与椭圆的一个交点为P,则使得·<0的点M的概率为____.‎ 解析:由题意得A1A2=2a=4,b=1,2c=2,设点P(x0,y0),当·=0时,(x0-)(x0+)+y=0,联立+y=1,解得x0=±.符合·<0的点M的横坐标在之间,故使得·<0的点M的概率为=.‎ ‎ 9. 设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是____.‎ 解析:设准线与x轴的交点为Q,连结PF2.因为PF1的中垂线过点F2,所以F1F2=PF2=2c.因为QF2=-c,且PF2≥QF2,所以由2c≥-c,可得2·≥-,即2e≥-e,解得e≥,结合椭圆的离心率e∈(0,1),得≤e<1.‎ ‎10. 设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,过点F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D.若AD⊥F1B,则椭圆C的离心率等于____.‎ 解析:因为AB⊥x轴,所以D为F1B的中点,且AF2=.又AD⊥F1B,所以AF1=AB,所以2a-=,所以=,e2=1-=,所以e=.‎ ‎11. 椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若AB=2,OC所在直线的斜率为,求椭圆的方程.‎ 解析:设点A(x1,y1),B(x2,y2),‎ 代入椭圆方程并作差得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.‎ 而=-1,kOC==,‎ 代入上式可得b=a.‎ 联立方程组 化简得(a+b)x2-2bx+b-1=0,‎ 所以x1+x2=,x1x2=.‎ 因为AB=|x2-x1|=|x2-x1|=2,‎ 所以-4·=4,‎ 将b=a代入得a=,所以b=,‎ 所以所求椭圆的方程是+=1.‎ ‎12. 设椭圆E的方程为+=1(a>b>0),O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为.‎ ‎(1) 求椭圆E的离心率;‎ ‎(2) 设点C的坐标为(0,-b),N为线段AC的中点,N关于直线AB的对称点的纵坐标为,求椭圆E的方程.‎ 解析:(1) 由题设条件知,点M的坐标为.‎ 又kOM=,则=,‎ 所以a=b,c==2b,‎ 故e==.‎ ‎(2) 由题意得直线AB的方程为+=1,‎ 点N的坐标为.‎ 设N关于直线AB的对称点S的坐标为,‎ 则线段NS的中点T的坐标为(+,-+).‎ 又点T在直线AB上,且kNS·kAB=-1,‎ 则 解得b=3,‎ 所以a=3,‎ 故椭圆E的方程为+=1.‎ ‎13. 设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且点P(a,b)满足PF2=F1 F2.‎ ‎(1) 求椭圆的离心率;‎ ‎(2) 设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且MN=AB,求椭圆的方程.‎ 解析:(1) 设点F1(-c,0),F2(c,0)(c>0),‎ 因为PF2=F1F2,‎ 所以=2c,‎ 整理得2+-1=0,‎ 解得=-1(舍)或=,所以e=.‎ ‎(2) 由(1)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,‎ 直线PF2的方程为y=(x-c).‎ A,B两点的坐标满足方程组 消去y并整理,得5x2-8cx=0,‎ 解得x1=0或x2=c,‎ 所以方程组的解 或 不妨设A,B(0,-c),‎ 所以AB==c,‎ 则MN=AB=2c.‎ 圆心(-1,)到直线PF2的距离d==.‎ 因为d2+=42,所以(2+c)2+c2=16,‎ 整理得7c2+12c-52=0,解得c=-(舍)或c=2,‎ 所以椭圆方程为+=1.‎