• 87.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教版(理)第一章第三节 函数及其表示作业

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
限时规范训练(限时练·夯基练·提能练)‎ A级 基础夯实练 ‎1.(2018·河南濮阳检测)函数f(x)=log2(1-2x)+的定义域为(  )‎ A.        B. C.(-1,0)∪ D.(-∞,-1)∪ 解析:选D.要使函数有意义,需满足解得x<且x≠-1,故函数的定义域为(-∞,-1)∪(-1,).‎ ‎2.已知函数f(x)=若f(2 019)=0,则a=(  )‎ A.0 B.-1‎ C.1 D.-2‎ 解析:选B.由于f(2 019)=f(-2 019)=f(-404×5+1)=f(1)=a+1=0,故a=-1.‎ ‎3.(2018·山西太原二模)若函数f(x)满足f(1-ln x)=,则f(2)等于(  )‎ A. B.e C. D.-1‎ 解析:选B.解法一:令1-ln x=t,则x=e1-t,于是f(t)=,即f(x)=,故f(2)=e.‎ 解法二:由1-ln x=2,得x=,这时==e,‎ 即f(2)=e.‎ ‎4.设函数f(x)=若f=4,则b=(  )‎ A.1 B. C. D. 解析:选D.f=3×-b=-b,‎ 当-b≥1,即b≤时,f=2-b,‎ 即2-b=4=22,得到-b=2,即b=;‎ 当-b<1,即b>时,f=-3b-b=-4b,‎ 即-4b=4,得到b=<,舍去.‎ 综上,b=,故选D.‎ ‎5.(2018·宁波模拟)下列函数中,不满足f(2x)=‎2f(x)的是(  )‎ A.f(x)=|x| B.f(x)=x-|x|‎ C.f(x)=x+1 D.f(x)=-x 解析:选C.对于选项A,f(2x)=|2x|=2|x|=‎2f(x);对于选项B,‎ f(x)=x-|x|= 当x≥0时,f(2x)=0=‎2f(x),当x<0时,f(2x)=4x=2·2x=‎2f(x),恒有f(2x)=‎2f(x);‎ 对于选项D,f(2x)=-2x=2(-x)=‎2f(x);对于选项C,f(2x)=2x+1=‎2f(x)-1.‎ ‎6.(2018·南昌模拟)已知具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:‎ ‎①y=x-;②y=x+;③y= 其中满足“倒负”变换的函数是(  )‎ A.①② B.①③‎ C.②③ D.①‎ 解析:选B.对于①,f(x)=x-,f=-x=-f(x),满足;对于②,f=+x=f(x),不满足;对于③,f= 即f=故f=-f(x),满足.‎ 综上可知,满足“倒负”变换的函数是①③.‎ ‎7.(2018·河南南阳模拟)某学校要召开学生代表大会,‎ 规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为(  )‎ A.y= B.y= C.y= D.y= 解析:选B.取特殊值法,若x=56,则y=5,排除C,D;若x=57,则y=6,排除A,选B.‎ ‎8.(2018·湖北十堰月考)若f(x)=,则f(x)的定义域为________.‎ 解析:要使原函数有意义,则log(2x+1)>0,即0<2x+1<1,所以-<x<0,所以原函数的定义域为.‎ 答案: ‎9.已知函数f(x)=若f(1)=,则f(3)=________.‎ 解析:由f(1)=,可得a=,所以f(3)==.‎ 答案: ‎10.若函数y=的定义域为R,则实数a 的取值范围是________.‎ 解析:因为函数y=的定义域为R,‎ 所以ax2+2ax+3=0无实数解,‎ 即函数y=ax2+2ax+3的图象与x轴无交点.‎ 当a=0时,函数y=的图象与x轴无交点;‎ 当a≠0时,则Δ=(‎2a)2-4·‎3a<0,解得0<a<3.‎ 综上,实数a的取值范围是[0,3).‎ 答案:[0,3)‎ B级 能力提升练 ‎11.(2018·山东济南模拟)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为(  )‎ A.- B.- C.-或- D.或- 解析:选B.当a>0时,1-a<1,1+a>1.‎ 由f(1-a)=f(1+a)得2-‎2a+a=-1-a-‎2a,解得a=-,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)得-1+a-‎2a=2+‎2a+a,解得a=-,所以a的值为-,故选B.‎ ‎12.已知函数f(x)=的值域是[-8,1],则实数a的取值范围是(  )‎ A.(-∞,-3] B.[-3,0)‎ C.[-3,-1] D.{-3}‎ 解析:选B.当0≤x≤4时,f(x)=-x2+2x=-(x-1)2+1,∴f(x)∈[-8,1];当a≤x<0时,‎ f(x)=-为增函数,f(x)∈,‎ 所以⊆[-8,1],-8≤-<-1,‎ ‎∴≤‎2a<1.‎ 即-3≤a<0.‎ ‎13.(2018·陕西西安模拟)设函数y=f(x)在R上有定义,对于给定的正数M,定义函数fM(x)=则称函数fM(x)为f(x)的“孪生函数”.若给定函数f(x)=2-x2,M=1,则fM(0)的值为(  )‎ A.2 B.1‎ C. D.- 解析:选B.由题意,令f(x)=2-x2=1,得x=±1,因此当x≤-1或x≥1时,x2≥1,-x2≤-1,∴2-x2≤1,fM(x)=2-x2;当-1<x<1时,x2<1,∴-x2>-1,∴2-x2>1,fM(x)=1,所以fM(0)=1,选B.‎ ‎14.(2018·福州调研)设函数f(x)=则满足f(f(a))=‎2f(a)的a的取值范围是(  )‎ A.        B.[0,1]‎ C. D.[1,+∞)‎ 解析:选C.当a=2时,f(2)=4,f(f(2))=f(4)=24,‎ 显然f(f(2))=‎2f(2),故排除A,B.‎ 当a=时,f=3×-1=1,f=f(1)=21=2.显然f=‎2f.故排除D.选C.‎ ‎15.(2018·石家庄质检)已知函数f(x)=2x+1与函数y=g(x)的图象关于直线x=2成轴对称图形,则函数y=g(x)的解析式为________.‎ 解析:设点M(x,y)为函数y=g(x)图象上的任意一点,点M′(x′,y′)是点M关于直线x=2的对称点,则又y′=2x′+1,∴y=2(4-x)+1=9-2x,即g(x)=9-2x.‎ 答案:g(x)=9-2x ‎16.(2018·柳州模拟)设函数f(x)=若f(f(a))≤2,则实数a的取值范围是________.‎ 解析:由题意得或解得f(a)≥-2.‎ 由或 解得a≤.‎ 答案:(-∞,]‎