• 402.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教B版分类加法计数原理与分步乘法计数原理、排列与组合作业

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.【江西省临川第一中学等九校2019届高三3月联考】已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。现用编号为1,2,3的三个仓库存放这6种化工产品,每个仓库放2种,那么安全存放的不同方法种数为( )‎ A.12 B.24 C.36 D.48‎ ‎【答案】D ‎【解析】设种产品分别为,画出图像如下图所示,根据题意,安全的分组方法有,,,,共种,每一种分组方法安排到个仓库,有种方法,故总的方法种数有种,故选D.‎ ‎2.【东北三省三校2019届高三第一次模拟】中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )‎ A.30种 B.50种 C.60种 D.90种 ‎【答案】B ‎【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,所以共有 ‎ 若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,所以共有 所以共有种,故选B ‎3.【福建省龙岩市2019届高三下学期教学质量检查】已知数列各项均为整数,共有7项,且满足,,其中,(为常数且).若满足上述条件的不同数列个数共有15个,则的值为( )‎ A.1 B.3 C.5 D.7‎ ‎【答案】B ‎【解析】∵,‎ ‎∴=1或=﹣1‎ 设有x个1,则有6x个﹣1‎ ‎∴﹣=(﹣)+(﹣)+…+(﹣)‎ ‎∴=x+(6﹣x)•(﹣1)‎ ‎∴x=‎ ‎∴这样的数列个数有,‎ 解得x=2或4,‎ ‎∴或 故选:B.‎ ‎4.(2018·浙江高考T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成    个没有重复数字的四位数.(用数字作答) ‎ ‎【命题意图】考查排列组合的简单应用.‎ ‎【解析】分类讨论:第一类:不含0的,按照分步乘法计数原理: =10×3×24=720;第二类:包含0的,按照分步乘法计数原理: =10×3×3×6=540,所以一共有1260个没有重复数字的四位数.‎ 答案:1260‎ ‎5.(2018·全国卷I高考理科·T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有    种.(用数字填写答案) ‎ ‎【解题指南】本题是一道关于组合计数的题目,并且在涉及至多至少问题时多采用间接法,间接法是得出选3人的选法总数,‎ 利用总的减去没有女生入选的选法种数,该题还可以用直接法,分别求出有1位女生和有2位女生入选分别有多少种选法,之后相加求解.‎ ‎【解析】方法一:根据题意,没有女生入选有=4种选法,从6名学生中任意选3人有=20种选法,故至少有1位女生入选的选法共有20-4=16种.‎ 方法二:恰有1位女生,有=12种,‎ 恰有2位女生,有=4种,‎ 所以不同的选法共有12+4=16种.‎