- 63.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时作业37 直接证明与间接证明
[基础达标]
一、选择题
1.要证明+<4可选择的方法有以下几种,其中最合理的为( )
A.综合法 B.分析法
C.比较法 D.归纳法
解析:要证明+<4,只需证明(+)2<16,即8+2<16,即证明<4,亦即只需证明15<16,而15<16显然成立,故原不等式成立.因此利用分析法证明较为合理,故选B.
答案:B
2.用反证法证明命题:“ a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不都能被5整除
D.a不能被5整除
解析:“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”.
答案:B
3.在△ABC中,sinAsinC0,
即cos(A+C)>0,所以A+C是锐角,
从而B>,故△ABC必是钝角三角形.
答案:C
4.分析法又称执果索因法,已知x>0,用分析法证明<1+时,索的因是( )
A.x2>2 B.x2>4
C.x2>0 D.x2>1
解析:因为x>0,
所以要证<1+,
只需证()2<2,
即证0<,即证x2>0,
因为x>0,所以x2>0成立,故原不等式成立.
答案:C
5.已知p=a+(a>2),q=2 (x>0),则( )
A.p>q B.p
a+b,则a,b应满足的条件是________. 解析:a+b>a+b,即(-)2(+)>0,需满足a≥0,b≥0且a≠b. 答案:a≥0,b≥0且a≠b 7.若向量a=(x+1,2),b=(4,-2),若a∥b,则实数x=________. 解析:因为a∥b, 所以(x+1)×(-2)=2×4, 解得x=-5. 答案:-5 8.[2019·太原模拟]用反证法证明“若x2-1=0,则x=-1或x=1”时,应假设__________________. 解析:“x=-1或x=1”的否定是“x≠-1且x≠1”. 答案:x≠-1且x≠1 三、解答题 9.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.求证:a,b,c成等差数列. 证明:由已知得sinAsinB+sinBsinC=2sin2B, 因为sinB≠0,所以sinA+sinC=2sinB, 由正弦定理,有a+c=2b,即a,b,c成等差数列. 10.已知a,b是正实数,求证+≥+. 证明:证法一 (作差法)因为a,b是正实数,所以 +--=+ = =≥0, 所以+≥+. 证法二 (分析法)已知a,b是正实数, 要证+≥+, 只需证a+b≥(+), 即证(a+b-)(+)≥(+), 即证a+b-≥, 就是要证a+b≥2. 显然a+b≥2恒成立,所以+≥+. 证法三 (综合法)因为a,b是正实数, 所以+++≥2+2=2+2, 当且仅当a=b时取等号,所以+≥+. 证法四 (综合法)因为a,b是正实数, 所以(+)=a+b++≥a+b+2=a+b+2=(+)2, 当且仅当a=b时取等号, 所以+≥+. [能力挑战] 11.若a,b,c均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+.求证:a,b,c中至少有一个大于0. 证明:假设a,b,c都不大于0, 即a≤0,b≤0,c≤0, 所以a+b+c≤0. 而a+b+c =++ =(x2-2x)+(y2-2y)+(z2-2z)+π =(x-1)2+(y-1)2+(z-1)2+π-3. 所以a+b+c>0,这与a+b+c≤0矛盾,故a,b,c中至少有一个大于0.