- 37.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(二) 充分条件与必要条件、
全称量词与存在量词
1.(2019·河南教学质量监测)已知命题p:∀x∈(1,+∞),x2+16>8x,则命题p的否定为( )
A.∀x∈(1,+∞),x2+16≤8x
B.∀x∈(1,+∞),x2+16<8x
C.∃x0∈(1,+∞),x+16≤8x0
D.∃x0∈(1,+∞),x+16<8x0
解析:选C 全称命题的否定为特称命题,故命题p的否定为:∃x0∈(1,+∞),x+16≤8x0.故选C.
2.(2018·天津高考)设x∈R,则“x3>8”是“|x|>2”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 由x3>8⇒x>2⇒|x|>2,反之不成立,
故“x3>8”是“|x|>2”的充分而不必要条件.
3.(2019·咸阳模拟)已知p∶m=-1,q:直线x-y=0与直线x+m2y=0互相垂直,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 由题意得直线x+m2y=0的斜率是-1,所以=-1,m=±1.所以p是q的充分不必要条件.故选A.
4.(2019·合肥调研)“a>1”是“3a>2a”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 因为y=x是增函数,又a>1,所以a>1,所以3a>2a;若3a>2a,则a>1=0,所以a>0,所以“a>1”是“3a>2a”的充分不必要条件,故选A.
5.下列命题中为假命题的是( )
A.∀x∈R,ex>0 B.∀x∈N,x2>0
C.∃x0∈R,ln x0<1 D.∃x0∈N*,sin=1
解析:选B 对于选项A,由函数y=ex的图象可知,∀x∈R,ex
>0,故选项A为真命题;对于选项B,当x=0时,x2=0,故选项B为假命题;对于选项C,当x0=时,ln=-1<1,故选项C为真命题;对于选项D,当x0=1时,sin=1,故选项D为真命题.综上知选B.
6.(2019·豫北名校联考)设a,b∈R,则“log2a>log2b”是“2a-b>1”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A log2a>log2b⇔a>b>0,2a-b>1⇔a>b,所以“log2a>log2b”是“2a-b>1”的充分不必要条件,故选A.
7.下列命题不正确的是( )
A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数
B.∃α,β∈R,使cos(α+β)=cos α+cos β
C.向量a=(-2,1),b=(-3,0),则a在b方向上的投影为2
D.“|x|≤1”是“x<1”的既不充分也不必要条件
解析:选A 对于A,取φ=,此时f(x)=sin=cos 2x为偶函数,故A错误;对于B,取α=,β=,则cos(α+β)=cos=-,cos α+cos β=-+0=-,故B正确;对于C,a在b方向上的投影是==2,故C正确;对于D,∵|x|≤1⇔-1≤x≤1,∴“|x|≤1”是“x<1”的既不充分也不必要条件,故D正确.故选A.
8.下面四个条件中,使a>b成立的充分不必要的条件是( )
A.a>b+1 B.a>b-1
C.a2>b2 D.a3>b3
解析:选A a>b+1⇒a>b,当a=2,b=1时满足a>b,但a=b+1,即a>b推不出a>b+1,故a>b+1是a>b成立的充分不必要条件,故选A.
9.已知:p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则实数k的取值范围是( )
A.[2,+∞) B.(2,+∞)
C.[1,+∞) D.(-∞,-1]
解析:选B 由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.
10.(2019·重庆调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B ∵f(x)为奇函数,∴f(-x)=-f(x).∴[f(-x)]′=[-f(x)]′=-f′(x),∴f′(-x)=f′(x),即f′(x)为偶函数;反之,若f′(x)为偶函数,如f′(x)=3x2,f(x)=x3+1满足条件,但f(x)不是奇函数,所以“f′(x)为偶函数”是“f(x)为奇函数”的必要不充分条件.故选B.
11.已知命题“∃x0∈R,使2x+(a-1)x0+≤0”是假命题,则实数a的取值范围是( )
A.(-∞,-1) B.(-1,3)
C.(-3,+∞) D.(-3,1)
解析:选B 原命题是假命题,则其否定是真命题,即∀x∈R,2x2+(a-1)x+>0,故判别式Δ=(a-1)2-4<0,解得a∈(-1,3).故选B.
12.(2019·怀仁一中期中)命题“∀x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是( )
A.a≥4 B.a>4
C.a≥1 D.a>1
解析:选B x2-a≤0⇔a≥x2.因为x2∈[1,4),所以a≥4.故a>4是已知命题的一个充分不必要条件,故选B.
13.命题p的否定是“对所有正数x,>x+1”,则命题p可写为________________________.
解析:因为p是綈p的否定,所以只需将全称量词变为存在量词,再对结论否定即可.
答案:∃x0∈(0,+∞),≤x0+1
14.“c<0”是“实系数一元二次方程x2+x+c=0有两个异号实根”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)
解析:若实系数一元二次方程x2+x+c=0有两个异号实根,则⇒c<0,若c<0,则x2+x+c=0有两个异号实根,所以“c<0”是“实系数一元二次方程x2+x+c=0有两个异号实根”的充要条件.
答案:充要
15.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.
解析:p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,也就是说,p对应的集合是q对应的集合的真子集,所以a<1.
答案:(-∞,1)
16.若命题p:存在x∈R,ax2+4x+a<-2x2+1是假命题,则实数a的取值范围是________.
解析:若命题p:存在x∈R,ax2+4x+a<-2x2+1是假命题,则p的否定为任意x∈R,ax2+4x+a≥-2x2+1是真命题,即(2+a)x2+4x+a-1≥0恒成立,当a=-2时不成立,舍去,则有解得a≥2.
答案:[2,+∞)
17.(2019·岳麓一模)已知条件p:log2(1-x)<0,条件q:x>a,若p是q的充分不必要条件,则实数a的取值范围是________.
解析:条件p:log2(1-x)<0.
所以0<1-x<1,解得0a,若p是q的充分不必要条件,
则a≤0.
则实数a的取值范围是(-∞,0].
答案:(-∞,0]
18.(2019·湖南十校联考)已知数列{an}的前n项和Sn=Aqn+B(q≠0),则“A=-B”是“数列{an}为等比数列”的____________条件.
解析:若A=B=0,则Sn=0,数列{an}不是等比数列.
如果{an}是等比数列,由a1=S1=Aq+B,得a2=S2-a1=Aq2-Aq,a3=S3-S2=Aq3-Aq2,
∴a1a3=a,从而可得A=-B,
故“A=-B”是“数列{an}为等比数列”的必要不充分条件.
答案:必要不充分