• 544.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教A版填空题的解题策略作业

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1. (2018 河南高考)一个圆经过椭圆 2 2 116 4 x y  的三个顶点,且圆心在 x 轴的正半轴上, 则该圆的标准方程为 . 2.若 0 1 a x dx  ,则实数 a 的值是________. 3.一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为 ________cm3. 4. (2017 浙江高考)设函数 f(x)=x3+3x2+1.已知 a≠0,且 f(x)-f(a)=(x-b)(x-a)2,x ∈R,则实数 a=_____,b=______. 5.在极坐标中,直线 ( ) 24sin     被圆 4  截得的弦长为________. 6.已知 PA 是圆 O(O 为圆心)的切线,切点为 A,PO 交圆 O 于 B,C 两点, 3AC  , ∠PAB=30°则线段 PB 的长为________. 7.已知 a,b,c∈R,且 a+b+c=2,a2+2b2+3c2=4,则 a 的取值范围为________. 8. (2018 湖北高考)函数 2 π( ) 4cos cos( ) 2sin | ln( 1) |2 2 xf x x x x     的零点个数 为 . 9.某校对全校男女学生共 4000 名进行健康调查,选用分层抽样法抽取一个容量为 200 的样本.已知女生抽了 80 人,则该校的女生人数应是 人. 10. 在 53(5 )x x 的二项展开式中, 2x 项的的系数是__________.(用数字作答) 11. 如果执行右面的程序框图,那么输出的 S  。 开始 是 否 结束 1k  0S  50k  ? 2S S k  1k k  S输出 12.方程(1-k)x2+(3-k2)y2=4 (k∈R),当 k=_________时,表示圆;当 k∈_________时, 表示椭圆;当 k∈_________时,表示双曲线;当 k=_________时,表示两条直线. 13. (2017 山东高考)已知函数 2 | |, ( ) 2 4 , x x m f x x mx m x m      其中 m>0.若存在实数 b,使得关于 x 的方程 f(x)=b 有三个不同的根,则 m 的取值范围是_______. 14.设 a 为实数,函数 3 2 2( ) ( 1)f x x ax a x    在(-∞,0)和(1,+∞)都是增 函数,求 a 的取值范围. 15.设集合 A={x|x2+6x=0},B={x|x2+3(a+1)x+a2―1=0},且 A∪B=A,则实数 a 的取值范 围是 . 16.作一个平面 M,使得四面体四个顶点到该平面的距离之比为 3∶1∶1∶1,则这样的 平面 M 共能作出________个. 17. 函数 y= |log|1 5 1 x 的定义域是 . 18.(2018 重庆高考)若函数 f(x)=|x+1|+2|x-a|的最小值为 5,则实数 a=_______. 19. 函数 ( )( 1 1)y f x x    为单调递减的奇函数,若 1( ) ( ) 0,2f x f  则 x 的取值 范围是 。 20.若存在常数 0p ,使得函数 )(xf 满足 ))(2()( Rxppxfpxf  ,则 )(xf 的一个正周 期为 。 【参考答案与解析】 1. 2 23 25 2 4x y      【解析】设圆 S 为(a,0),则半径为 4-|a|, ∴(4-|a|)2=|a|2+4 ∴ 3 2a   ∴圆的方程为 2 23 25 2 4x y      2. 2 ; 【解析】 2 2 00 1 1| 12 2 a axdx x a   , 2a  或 2a   (舍去) 3.80; 【解析】该几何体是一个正四棱锥,且侧面的等腰三角形的底边为 8,三角形的高为 5, 故侧面积为 80. 4.【答案】-2;1. 【解析】f(x)-f(a)=x3+3x2+1-a3-3a2-1=x3+3x2-a3-3a2, (x-b)(x-a)2=x3-(2a+b)x2+(a2+2ab)x-a2b,, 所以 2 2 3 2 2 3 2 0 3 a b a ab a b a a           ,解得 2 1 a b     . 5. 4 3 ; 【解析】转化为直角坐标系,即直线 2x y  截圆 2 2 16x y  的弦长,由垂径定理 得弦长为 4 3 . 6.1; 【解析】连接 AO(如图), P A OB C 则 Rt ABC 中, 30ACB   , 1BO CO  , 在 Rt PAO 中, 60AOP   , 1AO CO  , 所以 2PO  , 1PB  . 7. 2{ | 2}11a a  【解析一】由 2a b c   得 2b c a   , 由 2 2 22 3 4a b c   ,得 2 2 22 3 4b c a   , 又因为 2 2 2 21 1 1 1| | | 2 3 | ( ) ( ) 2 3 2 3 2 3 b c b c b c         , 即 25| 2 | 46a a    ,两边平方整理得 211 24 4 0a a   ,解得 2 211 a  。 【解析二】由 2 2 22 3 4a b c   得 2 2 22 3 4b c a   , 令 24 sin 2 ab  , 24 cos 3 ac  , 则 2 24 4sin cos 2 2 3 a aa      , 整理得 2 54 sin( ) 26a a     , 当sin( ) 1   时, 2 54 26a a   , 两边平方并整理得 211 14 4 0a a   ,解得 2a  或 2 11a  , 又 0 sin( ) 1    , 故 a 的取值范围 2 211 a  . 8.2 个; 【解析】 2( ) 4cos cos( ) 2sin | ln( 1) |2 2 2(1 cos )sin 2sin | ln( 1) | sin 2 | ln( 1) | xf x x x x x x x x x x              所以函数 f(x)的零点个数为函数 y=sin2x 与 y=|ln(x+1)|图象的交点的个数,函数 y=sin2x 与 y=|ln(x+1)|图象如图,由图知,两函数图象有 2 个交点,所以函数 f(x)由 2 个零点. 9.1600; 【解析】 804000 1600200   10. 250 ; 【解析】展开式的通项 11 5 32 1 5 (5 ) ( )r r r rT C x x    6 15 5 5 5)1( r rrr xC    , 由 26 15  r 得 3r  ,∴ 3 2 2 2 4 5 5 250T C x x     。 11. 2550; 【解析】依据题意可知: 0 2 1 2 2 ... 2 50 2(1 2 ... 50) 2550S              。 12. k=-1;k∈( 3 ,-1)∪(-1,1);k∈(-∞, 3 )∪(1, 3 );k=1 或 k= 3 【解析】①表示圆时,1-k=3-k2>0,解得 k=-1 ②表示椭圆时, 2 2 1 0 3 0 1 3 k k k k          ,解得:k∈( 3 ,-1)∪(-1,1); ③表示双曲线时,(1-k)(3-k2)<0, 解得 k∈(-∞, 3 )∪(1, 3 ); ④表示两直线时, 2 1 0 3 0 k k      或 2 1 0 3 0 k k      , 解得 k=1 或 k= 3 . 13.【答案】(3,+∞) 【解析】当 m>0 时,函数 2 | |, ( ) 2 4 , x x m f x x mx m x m      的图象如下: ∵x>m 时,f(x)=x2―2mx+4m=(x―m)2+4m―m2>4m-m2, ∴y 要使得关于 x 的方程 f(x)=b 有三个不同的根, 必须 4m-m2<m(m>0), 即 m2>3m(m>0), 解得 m>3, ∴m 的取值范围是(3,+∞), 故答案为:(3,+∞)。 14. 6( , ] [1, )2    15. 13{ | 1 1}5a a a    或 【解析】A={x|x2+6x=0}={0,―6},由 A∪B=A,得 B A. (1)当 B= 时,即方程 x2+3(a+1)x+a2―1=0 无实数根, 由Δ=9(a+1)2―4(a2―1)<0,解得 13 15 a    . (2)当 B≠ 时,即 B={0}或 B={―6}或 B={0,-6}. ①当 B={0}时,即方程 x2+3(a+1)x+a2-1=0 有两个等根为 0. ∴ 2 1 0 3( 1) 0 a a       ,∴a=-1 ②当 B={―6}时,即方程 x2+3(a+1)x+a2―1 有两个等根为―6, ∴ 2 1 36 3( 1) 12 a a       ,此方程组无解. ③当 B={0,―6}时,即方程 x2+3(a+1)x+a2―1=0 有两个实根 0 和―6, ∴ 2 1 0 3( 1) 6 a a        ,∴a=1 综上可知实数 a 的取值范围是 13{ | 1 1}5a a a    或 . 16.32 【解析】根据这四个顶点相对于平面 M 的位置的各种不同情况,分别求出满足条件的平 面的个数. (1)四个顶点都在 M 的同一侧,由于可以从四个顶点中任选一个作为距离最远的点, 故此时共有 1 4 4C  个; (2)距离最远的点在平面 M 的一侧,另外三点在 M 的另一侧,同理有 1 4 4C  个; (3)距离最远的点与另一个距离较近的某个点在 M 的一侧,而另两点在另一侧,这时 有 1 1 4 3 12C C  个; (4)距离最远的点与另三点中的某两点在 M 的一侧,而另一点在另一侧,同理有 1 1 4 3 12C C  个; 综上所述,共能作出 32 个这样的平面. 17. x∈ 1[ ,5]5 ; 【解析】 1 5 1 log x ≥0, 1 3 1 log 1x   ,∴ x∈ 1[ ,5]5 . 18.4 或-6 【解析】由绝对值的性质知 f(x)的最小值在 x=-1 或 x=a 时取得,若 f(―1)=2|―1―a|=5, 3 7 2 2a a  或 ,经检验均不合;若 f(a)=5,则|x+1|=5,a=4 或 a=―6,经检验合题 意,因此 a=4 或 a=―6. 19. )1,2 1( ; 【解析】 1( ) ( ) 02f x f  且 )(xf 为奇函数,∴ 1 1( ) ( ) ( )2 2f x f f    , )1,1()( xxf 在 上为减函数, ∴ 1 1 1 2 x x      ,解之得 1 12 x   。 20. 2 p 【解析】令 ,2 ppx   则 2 ppx   ,依题意有 ( ) ( )2 pf f   ,此式对任意  都 成立,而 02 p  且为常数,因此,说明 ( )f x 是一个周期函数, 2 p 为最小正周期。