• 79.06 KB
  • 2021-06-16 发布

【数学】2020届一轮复习(理)通用版考点测试59随机事件的概率作业

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
考点测试59 随机事件的概率 ‎                    ‎ 高考概览 考纲研读 ‎1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别 ‎2.了解两个互斥事件的概率加法公式 一、基础小题 ‎1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是(  )‎ ‎①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品;④至少1件次品和全是正品.‎ A.①② B.①③ C.③④ D.①④‎ 答案 D 解析 根据互斥事件概念可知选D.‎ ‎2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为(  )‎ A.0.7 B.0.‎65 C.0.35 D.0.3‎ 答案 C 解析 事件“抽到的不是一等品”与事件A是对立事件,由于P(A)=‎ ‎0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P=1-P(A)=1-0.65=0.35.选C.‎ ‎3.甲、乙两位同学在国际象棋比赛中,和棋的概率为,乙同学获胜的概率为,则甲同学不输的概率是(  )‎ A. B. C. D. 答案 D 解析 因为乙获胜的概率为,所以甲不输的概率为1-=.故选D.‎ ‎4.从正五边形的五个顶点中,随机选择三个顶点连成三角形,对于事件A:“这个三角形是等腰三角形”,下列推断正确的是(  )‎ A.事件A发生的概率等于 B.事件A发生的概率等于 C.事件A是不可能事件 D.事件A是必然事件 答案 D 解析 根据正五边形的性质,可知任取三个顶点连成的三角形一定是等腰三角形,所以A是必然事件.故选D.‎ ‎5.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=‎1”‎,则甲是乙的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1,充分性成立.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件,必要性不成立.故甲是乙的充分不必要条件.‎ ‎6.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示“向上的一面出现奇数”,事件B表示“向上的一面出现的数字不超过‎3”‎,事件C表示“向上的一面出现的数字不小于‎4”‎,则(  )‎ A.A与B是互斥而非对立事件 B.A与B是对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件 答案 D 解析 A∩B={出现数字1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.故选D.‎ ‎7.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.‎ 答案 A与B,A与C,B与C,B与D B与D 解析 设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅,故A与B,A与C,B与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.‎ 二、高考小题 ‎8.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为(  )‎ A.0.3 B.0.‎4 C.0.6 D.0.7‎ 答案 B 解析 设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付,则P(A)+P(B)+P(C)=1,因为P(A)=0.45,P(C)=0.15,所以P(B)=0.4.故选B.‎ ‎9.(经典全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(  )‎ A. B. C. D. 答案 D 解析 解法一:4位同学各自在周六、日任选一天参加公益活动共有24=16(种)结果,而周六、日都有同学参加公益活动有两种情况:①一天一人,另一天三人,CA=8(种);②每天二人,有C=6(种),所以P==.故选D.‎ 解法二(间接法):4位同学各自在周六、日任选一天参加公益活动,共有24=16(种)结果,而4人都选周六或周日有2种结果,所以P=1-=.故选D.‎ 三、模拟小题 ‎10.(2018·山西四校联考)从1,2,3,4这四个数中一次随机取两个,则取出的这两个数之和为偶数的概率是(  )‎ A. B. C. D. 答案 B 解析 由题意知所有的基本事件有C共6个,和为偶数的基本事件有(1,3),(2,4),共2个,故所求概率为=.‎ ‎11.(2018·河南新乡二模)已知随机事件A,B发生的概率满足条件P(A∪B)=,某人猜测事件∩发生,则此人猜测正确的概率为(  )‎ A.1 B. C. D.0‎ 答案 C 解析 ∵事件∩与事件A∪B是对立事件,∴事件∩发生的概率为P(∩)=1-P(A∪B)=1-=,则此人猜测正确的概率为.故选C.‎ ‎12.(2018·河南濮阳二模)如图,已知电路中4个开关闭合的概率都是,且是相互独立的,则灯亮的概率为(  )‎ A. B. C. D. 答案 C 解析 灯泡不亮包括两种情况:①四个开关都开,②下边的2个都开,上边的2个中有一个开.∴灯泡不亮的概率是×××+×××+×××=,∵灯亮和灯不亮是两个对立事件,∴灯亮的概率是1-=.故选C.‎ ‎13.(2018·福建漳州二模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”.从上述回答分析,丙是第一名的概率是(  )‎ A. B. C. D. 答案 B 解析 ∵甲和乙都不可能是第一名,∴第一名只可能是丙、丁或戊,又考虑到所有的限制条件对丙、丁、戊都没有影响,∴这三个人获得第一名是等概率事件,∴丙是第一名的概率是.故选B.‎ ‎14.(2018·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.‎ 答案  解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.‎ 一、高考大题 ‎1.(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出 险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.‎‎85a a ‎1.‎‎25a ‎1.‎‎5a ‎1.‎‎75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;‎ ‎(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ 解 (1)事件A发生当且仅当一年内出险次数小于2.‎ 由所给数据知一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.‎‎85a a ‎1.‎‎25a ‎1.‎‎5a ‎1.‎‎75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.‎85a×0.30+a×0.25+1.‎25a×0.15+1.‎5a×0.15+1.‎75a×0.10+‎2a×0.05=1.‎1925a.‎ 因此,续保人本年度平均保费的估计值为1.‎1925a.‎ 二、模拟大题 ‎2.(2018·山西太原一模)某快递公司收取快递费用的标准如下:质量不超过‎1 kg的包裹收费10元;质量超过‎1 kg的包裹,除‎1 kg收费10元之外,超过‎1 kg的部分,每‎1 kg(不足‎1 kg,按‎1 kg计算)需再收5元.‎ 该公司对近60天,每天揽件数量统计如下表:‎ 包裹件数范围 ‎0~‎ ‎100‎ ‎101~‎ ‎200‎ ‎201~‎ ‎300‎ ‎301~‎ ‎400‎ ‎401~‎ ‎500‎ 包裹件数(近似处理)‎ ‎50‎ ‎150‎ ‎250‎ ‎350‎ ‎450‎ 天数 ‎6‎ ‎6‎ ‎30‎ ‎12‎ ‎6‎ ‎(1)某人打算将A(0.‎3 kg),B(1.‎8 kg),C(1.‎5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;‎ ‎(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?‎ 解 (1)由题意,寄出方式有以下三种可能:‎ 所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为.‎ ‎(2)由题目中的天数得出频率,如下:‎ 包裹件数范围 ‎0~‎ ‎100‎ ‎101~‎ ‎200‎ ‎201~‎ ‎300‎ ‎301~‎ ‎400‎ ‎401~‎ ‎500‎ 包裹件数(近似处理)‎ ‎50‎ ‎150‎ ‎250‎ ‎350‎ ‎450‎ 天数 ‎6‎ ‎6‎ ‎30‎ ‎12‎ ‎6‎ 频率 ‎0.1‎ ‎0.1‎ ‎0.5‎ ‎0.2‎ ‎0.1‎ 若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:‎ 包裹件数(近似处理)‎ ‎50‎ ‎150‎ ‎250‎ ‎350‎ ‎450‎ 实际揽件数 ‎50‎ ‎150‎ ‎250‎ ‎350‎ ‎450‎ 频率 ‎0.1‎ ‎0.1‎ ‎0.5‎ ‎0.2‎ ‎0.1‎ 平均揽件数 ‎50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260‎ 故公司每日利润为260×5-3×100=1000(元);‎ 若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:‎ 包裹件数(近似处理)‎ ‎50‎ ‎150‎ ‎250‎ ‎350‎ ‎450‎ 实际揽件数 ‎50‎ ‎150‎ ‎250‎ ‎300‎ ‎300‎ 频率 ‎0.1‎ ‎0.1‎ ‎0.5‎ ‎0.2‎ ‎0.1‎ 平均揽件数 ‎50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235‎ 故公司平均每日利润为235×5-2×100=975(元).‎ 综上,公司将前台工作人员裁员1人对提高公司利润不利.‎