• 86.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教B版(理)第六章29等比数列及其前n项和作业

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎【课时训练】第29节 等比数列及其前n项和 一、选择题 ‎1.(2018贵州遵义四中段测)设数列{an}满足2an=an+1(n∈N*),且前n项和为Sn,则的值为(  )‎ A. B. C.4 D.2‎ ‎【答案】A ‎【解析】由题意知,数列{an}是以2为公比的等比数列,故==.故选A.‎ ‎2.(2018河南名校联考)在各项均为正数的等比数列{an}中,a1=3,a9=a‎2a3a4,则公比q的值为(  )‎ A.    B.  ‎ C.2 D.3‎ ‎【答案】D ‎【解析】由a9=a‎2a3a4得a1q8=aq6,所以q2=a.因为等比数列{an}的各项都为正数,所以q=a1=3.‎ ‎3.(2018辽宁沈阳二中质检)在等比数列{an}中,a‎5a11=3,a3+a13=4,则=(  )‎ A.3   B.- C.3或 D.-3或- ‎【答案】C ‎【解析】根据等比数列的性质得化简得3q20-10q10+3=0,解得q ‎10=3或,所以==q10=3或.‎ ‎4.(2018江苏泰州模拟)已知各项均是正数的等比数列{an}中,a2,a3,a1成等差数列,则的值为(  )‎ A.    B. C.- D.或 ‎【答案】B ‎【解析】设{an}的公比为q(q>0).由a3=a2+a1,得q2-q-1=0,解得q=.从而=q=.‎ ‎5.(2018广东珠海综合测试)在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的(  )‎ A.充分不必要条件   B.必要不充分条件 C.充分必要条件     D.既不充分也不必要条件 ‎【答案】B ‎【解析】当an=0时,也有an=2an-1,n=2,3,4,…,但{an}不是等比数列,因此充分性不成立;当{an}是公比为2的等比数列时,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立.故选B.‎ ‎6.(2019辽宁盘锦高中月考)已知等比数列{an}的前n项积记为Ⅱn.若a‎3a4a8=8,则Ⅱ9=(  )‎ A.512   B.256  ‎ C.81 D.16‎ ‎【答案】A ‎【解析】由题意知,a‎3a4a7q=a‎3a7a4q=a‎3a7a5=a=8,Ⅱ9=a‎1a2a3…a9=(a‎1a9)(a‎2a8)·(a‎3a7)(a‎4a6)a5=a,所以Ⅱ9=83=512.‎ ‎7.(2018湖南浏阳一中月考)已知等比数列{an ‎}的各项均为不等于1的正数,数列{bn}满足bn=lg an,b3=18,b6=12,则数列{bn}的前n项和的最大值为(  )‎ A.126   B.130‎ C.132 D.134‎ ‎【答案】C ‎【解析】设等比数列{an}的公比为q(q>0),由题意可知,lg a3=b3,lg a6=b6.又b3=18,b6=12,则a1q2=1018,a1q5=1012,∴q3=10-6,即q=10-2,∴a1=1022.∵{an}为正项等比数列,∴{bn}为等差数列,且公差d=-2,b1=22,故bn=22+(n-1)×(-2)=-2n+24.∴数列{bn}的前n项和Sn=22n+×(-2)=-n2+23n=-2+.又n∈N*,故n=11或12时,(Sn)max=132.‎ 二、填空题 ‎8.(2018河南洛阳统考)已知{an}为等比数列,且a3+a6=36,a4+a7=18.若an=,则n=________.‎ ‎【答案】 9‎ ‎【解析】设{an}的公比为q,由a3+a6=36,a4+a7=(a3+a6)q=18,解得q=,由a1(q2+q5)=36得a1=128,进而an=128·n-1=n-8.由an=,解得n=9.‎ ‎9.(2018天津六校联考)设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=________.‎ ‎【答案】15 ‎ ‎【解析】由题意得an=(-2)n-1,所以a1+|a2|+a3+|a4|=1+|-2|+(-2)2+|(-2)3|=15.‎ ‎10.(2018福建上杭一中月考)已知等差数列{an}的前5项和为105,且a10=‎2a5.对任意的m∈N*,将数列{an}中不大于‎72m 的项的个数记为bm,则数列{bm}的前m项和Sm=________.‎ ‎【答案】 ‎【解析】设数列{an}的公差为d,前n项和为Tn.由T5=105,a10=‎2a5,得解得a1=7,d=7,因此an=a1+(n-1)d=7+7(n-1)=7n(n∈N*).对任意的m∈N*,若an=7n≤‎72m,则n≤‎72m-1.因此bm=‎72m-1,所以数列{bm}是首项为7,公比为49的等比数列,故Sm===.‎ 三、解答题 ‎11.(2018湖北鄂东南联盟期中联考)已知数列{an}满足a1=,an+1=10an+1.‎ ‎(1)证明:数列是等比数列,并求数列{an}的通项公式;‎ ‎(2)数列{bn}满足bn=lg,Tn为数列的前n项和,求证:Tn<.‎ ‎(1)【解】由an+1=10an+1,得an+1+=10an+=10,所以=10,所以数列是等比数列,首项为a1+=100,公比为10.‎ 所以an+=100×10n-1=10n+1,所以an=10n+1-.‎ ‎(2)【证明】由(1)可得bn=lg=lg 10n+1=n+1,‎ 所以==-,‎ 所以Tn=++…+=-<,‎ 所以Tn<.‎ ‎12.(2018长沙模拟)设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.‎ ‎(1)求a4的值;‎ ‎(2)证明:为等比数列.‎ ‎(1) 【解】当n=2时,4S4+5S2=8S3+S1,‎ 即4+5=8+1,‎ 解得a4=.‎ ‎(2)【证明】由4Sn+2+5Sn=8Sn+1+Sn-1(n≥2),得 ‎4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2),即4an+2+an=4an+1(n≥2).‎ ‎∵‎4a3+a1=4×+1=6=‎4a2,∴4an+2+an=4an+1(n∈N*).‎ ‎∴====.‎ ‎∴数列是以a2-a1=1为首项,为公比的等比数列.‎