• 864.00 KB
  • 2021-06-16 发布

【数学】2020届一轮复习人教B版正弦定理和余弦定理作业

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
温馨提示:‎ ‎ 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。 ‎ 考点17 正弦定理和余弦定理 一、 选择题 ‎1.(2018·全国卷II高考理科·T6)在△ABC中,cos=,BC=1,AC=5,则AB=‎ ‎(  )‎ A.4 B. C. D.2‎ ‎【命题意图】本题考查余弦定理,二倍角公式.‎ ‎【解析】选A.cosC=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cosC,‎ 所以AB2=1+25-2×1×5×=32,所以AB=4.‎ ‎2.(2018·全国卷II高考文科·T7)在△ABC中,cos=,BC=1,AC=5,则AB=‎ ‎(  )‎ A.4 B. C. D.2‎ ‎【命题意图】本题考查余弦定理,二倍角公式.‎ ‎【解析】选A.cosC=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cosC,‎ 所以AB2=1+25-2×1×5×=32,所以AB=4.‎ ‎3.(2018·全国Ⅲ高考理科·T9)同(2018·全国Ⅲ高考文科·T11)△ABC的内角A,B,C的对边分别为a,b,c,若△ABC的面积为,则C= (  )‎ A. B. C. D.‎ ‎【命题意图】本题考查三角形面积公式和余弦定理的应用,‎ 考查推理论证能力、运算求解能力,体现了逻辑推理和数学运算的核心素养.试题难度:中.‎ ‎【解析】选C.由题意S△ABC=absinC=,即sinC=,由余弦定理可知sinC=cosC,即tanC=1,‎ 又C∈(0,π),所以C=.‎ 二、填空题 ‎4.(2018·全国卷I高考文科·T16)△ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC,b2+c2-a2=8,则△ABC的面积为    . ‎ ‎【解析】根据正弦定理有:‎ sinBsinC+sinCsinB=4sinAsinBsinC,‎ 所以2sinBsinC=4sinAsinBsinC,‎ 因为B,C∈(0,π),‎ 所以sinB≠0,sinC≠0,‎ 所以sinA=.因为b2+c2-a2=8,‎ 所以cosA===,‎ 所以bc=,所以S=bcsinA=.‎ 答案:‎ ‎5.(2018·北京高考文科·T14)若△ABC的面积为(a2+c2-b2),且∠C为钝角,则∠B=    ;的取值范围是    . ‎ ‎【命题意图】考查运用正弦定理、余弦定理解三角形,求取值范围,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.‎ ‎【解析】由余弦定理,a2+c2-b2=2accosB,‎ ‎△ABC的面积S=(a2+c2-b2)=·2accosB,‎ 又S=acsinB,‎ 所以cosB=sinB,因为角C为钝角,所以cosB≠0,‎ 所以tanB==,又0,=+>2,‎ 即的取值范围是(2,+∞).‎ 答案: (2,+∞)‎ ‎6.(2018·浙江高考T13)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=    ,c=    . ‎ ‎【命题意图】考查正、余弦定理的简单应用.‎ ‎【解析】由正弦定理=得=,得sinB=,由余弦定理得cosA===,解得c=3.‎ 答案: 3‎ 三、解答题 ‎7.(本小题13分)(2018·北京高考理科·T15)‎ 在△ABC中,a=7,b=8,cosB=-.‎ ‎(1)求∠A.‎ ‎(2)求AC边上的高.‎ ‎【命题意图】考查运用正弦定理、余弦定理解三角形,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养.‎ ‎【解析】方法一:(1)由余弦定理,cosB==‎ ‎=-,‎ 解得c=-5(舍),或c=3,‎ 所以cosA===,‎ 又因为00,sinB=,‎ 由正弦定理,=,‎ 即sinA=sinB=×=,‎ 又因为0