- 165.52 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016四川省高考理科数学试题
本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题). 第Ⅰ卷1至2页,第Ⅱ卷3至4页,
共4页,满分150分,考试时间120分钟. 考生作答时,须将答案答在答题卡上,在本试题卷、
草稿上答题无效. 考试结束后,将本试题卷和答题卡一并交回.
第Ⅰ卷(选择题 共50分)
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一
个是符合题目要求的.
1. 设集合 ,Z为整数集,则集合 中元素的个数是( )
A.3 B.4 C.5 D.6
2. 设 为虚数单位,则 的展开式中含 的项为( )
A. B. C. D.
3. 为了得到函数 的图象,只需把函数 的图象上所有的点( )
A.向左平行移动 个单位长度 B.向右平行移动 个单位长度
C.向左平行移动 个单位长度 D.向右平行移动 个单位长度
4. 用数字1,2,3,4,5构成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48 C.60 D.72
5. 某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130
万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发
资金开始超过200万元的年份是( )
(参考数据: , , )
A.2018年 B.2019年 C.2020年 D.2021年
6. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的
《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算
法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例。
若输入n,x的值分别为3,2. 则输出v的值为( )
A.9 B.18
C.20 D.35
7. 设p:实数x,y满足 ,q:实数x,y满足 则p是
q的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
8. 设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是
线段PF上的点,且 ,则直线OM斜率的最大值为( )
{ | 2 2}A x x A Z
i 6( i)x 4x
415x 415x 420ix 420ix
πsin 2 3y x
sin 2y x
π
3
π
3
π
6
π
6
lg1.12 0.05 lg1.3 0.11 lg2 0.30
2 2( 1) ( 1) 2x y
1,
1 ,
1,
y x
y x
y
2 2 ( 0)y px p
| | 2 | |PM MF
A. B. C. D.1
9. 设直线 , 分别是函数 图象上点 , 处的切线, 与 垂
直相交于点P,且 , 分别与y轴相交于点A,B,则 的面积的取值范围是( )
A. B. C. D.
10. 在 平 面 内 , 定 点 A , B , C , D 满 足 ,
,动点P,M满足 , ,则 的最
大值是( )
A. B. C. D.
第Ⅱ卷 (非选择题 共100分)
二、填空题:本大题共5小题,每小题5分,共25分.
11. __________.
12. 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上
时,就说这次试验成功,则在2次试验中成功次数X的均值是
__________.
13. 已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥
的正视图如图所示,则该三棱锥的体积是__________.
14. 已 知 函 数 是 定 义 在 R 上 的 周 期 为 2 的 奇 函 数 , 当
时, ,
则 __________.
15. 在 平 面 直 角 坐 标 系 中 , 当 不 是 原 点 时 , 定 义 的 “ 伴 随 点 ” 为
;当 是原点时,定义 的“伴随点”为它自身,平面曲线 上
所有点的“伴随点”所构成的曲线 定义为曲线 的“伴随曲线”,现有下列命题:
① 若点 的“伴随点”是点 ,则点 的“伴随点”是点A;
② 单位圆的“伴随曲线”是它自身;
③ 若曲线 关于 轴对称,则其“伴随曲线” 关于 轴对称;
④ 一条直线的“伴随曲线”是一条直线.
其中的真命题是__________(写出所有真命题的序号).
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或步骤.
16. (本小题满分12分)
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用
水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的
部分按平价收费,超出x的部分按议价收费. 为了了解居民用水情况,通过抽样,获得
了某年100位居民每人的月均用水量(单位:吨),将数据按照 , ,…,
分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
3
3
2
3
2
2
1l 2l ln , 0 1,( ) ln , 1,
x xf x x x
1P 2P 1l 2l
1l 2l PAB△
0,1 (0, 2) (0, ) (1, )
| | = | | = | |DA DB DC
2DA DB DB DC DC DA | | =1AP PM MC 2
| |BM
43
4
49
4
37 6 3
4
37 2 33
4
2 2π πcos sin =8 8
( )f x
0 1x ( ) 4xf x
5 (1)2f f
( , )P x y P
2 2 2 2' ,y xP x y x y
P P C
'C C
A 'A 'A
C x 'C y
[0, 0.5) [0.5,1)
[4, 4.5)
正视图
1
3 3
(III)若该市政府希望使85%的居民每月均用水量不超过标准x(吨),估计x的值,并
说明理由.
17. (本小题满分12分)
在 中,角A,B,C所对的边分别是a,b,c,且 .
(I)证明: ;
(II)若 ,求 .
18. (本小题满分12分)
如图,在四棱锥 中, , , ,E
为棱AD的中点,异面直线PA与CD所成的角为 .
(I)在平面PAB内找一点M,使得直线 平面PBE,
并说明理由;
(II)若二面角 的大小为 ,求直线PA与
平面PCE所成角的正弦值.
19. (本小题满分12分)
已知数列 的首项为1, 为数列 的前n项和, ,其中 ,
.
(I)若 成等差数列,求 的通项公式;
(II)设双曲线 的离心率为 ,且 ,证明: .
20. (本小题满分13分)
已知椭圆 的两个焦点与短轴的一个端点是直角三角形的3个顶
点,直线 与椭圆E有且只有一个公共点T.
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线 平行于OT,与椭圆E交于不同的两点A、B,且与直线
l交于点P. 证明:存在常数 ,使得 ,并求 的值.
21. (本小题满分14分)
设函数 ,其中 .
(I)讨论 的单调性;
a
0.52
0.40
0.16
0.12
0.08
0.04
4.543.532.521.510.50 月均用水量(吨)
组距
频率
ABC△ cos cos sinA B C
a b c
sin sin sinA B C
2 2 2 6
5b c a bc tan B
P ABCD / /AD BC 90ADC PAB 1
2BC CD AD
90
/ /CM
P CD A 45
{ }na nS { }na 1 1n nS qS 0q
*nN
2 3 22 , , 2a a a na
2
2
2 1
n
yx a ne 2
5
3e 1 2 1
4 3
3
n n
n ne e e
2 2
2 2: 1( 0)x yE a ba b
: 3l y x
'l
2| | | | | |PT PA PB
2( ) lnf x ax a x Ra
( )f x
P
A E D
CB
(II)确定a的所有可能取值,使得 在区间 内恒成立
( …为自然对数的底数).
11( ) e xf x x
(1,+ )
e 2.718
相关文档
- 2013年数学上海高考数学试题(文科)2021-06-247页
- 考点36 椭圆-2018版典型高考数学试2021-06-2323页
- 2013年上海高考数学试题(文科)2021-06-237页
- 考点48+正态分布-2018版典型高考数2021-06-2310页
- 理科高考数学试题分章汇集练习:坐标2021-06-236页
- 理科高考数学试题分章汇集练习:三角2021-06-2218页
- 考点28 组合体的“切”“接”综合2021-06-2215页
- 理科高考数学试题分章汇集练习:平面2021-06-214页
- 理科高考数学试题分章汇集练习:函数2021-06-217页
- 考点31+直线与平面所成的角-2018版2021-06-2123页