- 497.50 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题04 立体几何中最值问题
一.方法综述
高考试题将趋于关注那些考查生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.
立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。
二.解题策略
类型一 距离最值问题
【例1】如图,矩形,矩形,正方形两两垂直,且,若线段上存在点使得,则边长度的最小值为( )
A. 4 B. C. D.
【答案】D
又,所以
.显然且.所以.
因为,所以.所以当, 取得最小值12.所以的最小值为.
故选D.
【指点迷津】利用图形的特点,建立空间直角坐标系,设长度为及点P的坐标,求的坐标,根据两向量垂直,数量积为0,得到函数关系式,利用函数求其最值。&
举一反三
1、如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是_____。
【答案】
∵P是侧面BCC1B1内一点,且A1P∥平面AEF,∴点P必在线段MN上。
在Rt△A1B1M中, ,
同理在Rt△A1B1N中,可求得,∴△A1MN为等腰三角形,
当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M或N处时A1P最长,
又.
所以线段A1P长度的取值范围是.&
2、【2017甘肃省天水市第一中上期期末】如图所示,在空间直角坐标系中,D是坐标原点,有一棱长为a的正方体,E和F分别是体对角线和棱上的动点,则的最小值为( )
A. B. C. a D.
【答案】B
3、如右图所示,在棱长为2的正方体中, 为棱的中点,点分别为面和线段上的动点,则周长的最小值为_______.
【答案】
【解析】将面与面折成一个平面,设E关于的对称点为M,E关于 对称点为N,则周长的最小值为.&
类型二 面积的最值问题
【例2】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球, , ,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是( )
A. B. C. D.
【答案】B
关注.