- 80.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 集合的表示
学习目标 1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.
知识点一 列举法
思考 要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?
答案 把它们一一列举出来.
梳理 把集合中的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.适用于元素较少的集合.
知识点二 描述法
思考 能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?
答案 不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.
梳理 描述法常用以表示无限集或元素个数较多的有限集.表示方法是在花括号内画一竖线,竖线前写元素的一般符号及取值(或变化)范围,竖线后写元素所具有的共同特征.
1.=1.(×)
2.=.(×)
3.=.(√)
4.=.(√)
类型一 用列举法表示集合
例1 用列举法表示下列集合.
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合.
考点 用列举法表示集合
题点 用列举法表示数集
解 (1)设小于10的所有自然数组成的集合为A,
那么A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,
那么B={0,1}.
反思与感悟 (1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.
(2)元素个数少且有限时,全部列举,如{1,2,3,4}.
跟踪训练1 用列举法表示下列集合.
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由1~20以内的所有素数组成的集合.
考点 用列举法表示集合
题点 用列举法表示数集
解 (1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.
(2)设由1~20以内的所有素数组成的集合为C,
那么C={2,3,5,7,11,13,17,19}.
类型二 用描述法表示集合
例2 试用描述法表示下列集合.
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
考点 用描述法表示集合
题点 用描述法表示有限数集
解 (1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.
(2)设大于10小于20的整数为x,
它满足条件x∈Z,且10