- 49.20 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
9.2 直线、圆的位置关系
挖命题
【考情探究】
考点
内容解读
5年考情
预测热度
考题示例
考向
关联考点
1.两直线的位置关系
①能根据两条直线的斜率判定这两条直线平行或垂直;
②能用解方程组的方法求两条相交直线的交点坐标;
③掌握两点间的距离公式,点到直线的距离公式,会求两条平行直线间的距离
2014江苏,11,5分
两直线平行
求参数的值
导数
★★☆
2014四川,14,5分
两直线相交求最值
基本不等式
2.直线与
圆的位
置关系
①能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;
②能用直线和圆的方程解决一些简单的问题;
③初步了解用代数方法处理几何问题的思想
2018课标Ⅲ,6,5分
直线与圆的位置
关系求范围
三角形面积公式
★★☆
2017课标Ⅱ,9,5分
直线与圆的位置
关系
双曲线的几何性质
2016课标Ⅲ,16,5分
直线与圆的
位置关系
点到直线
距离公式
3.圆与圆的
位置关系
2015课标Ⅱ,7,5分
直线与圆的位置
关系求弦长
圆的方程
分析解读 从近5年的高考情况来看,本节主要考查两条直线的位置关系、直线与圆的位置关系、弦长问题、切线问题等,一般为选择题、填空题,难度中等,本节知识还常常与其他知识结合在一起考查最值问题,在解题时要充分利用圆的几何性质简化运算过程,认真体会数形结合思想的应用.
破考点
【考点集训】
考点一 两直线的位置关系
1.(2018河北五个一联盟联考,3)已知直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是l1平行于l2的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
答案 C
2.(2018河南顶级名校第二次联考,6)已知m,n,a,b∈R,且满足3m+4n=6,3a+4b=1,则(m-a)2+(n-b)2的最小值为( )
A.3 B.2 C.1 D.12
答案 C
考点二 直线与圆的位置关系
1.(2017安徽江南十校联考,6)直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是( )
A.[-2,2] B.[-22,22]
C.[-2-1,2-1] D.[-22-1,22-1]
答案 D
2.(2017福建漳州八校4月联考,7)已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在的直线,直线l的方程为ax+by=r2,那么( )
A.m∥l,且l与圆相交 B.m⊥l,且l与圆相切
C.m∥l,且l与圆相离 D.m⊥l,且l与圆相离
答案 C
考点三 圆与圆的位置关系
1.已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1外切,则ab的最大值为 .
答案 94
2.(2018江苏镇江期末)已知圆C与圆x2+y2+10x+10y=0相切于原点,且过点A(0,-6),则圆C的标准方程为 .
答案 (x+3)2+(y+3)2=18
炼技法
【方法集训】
方法1 对称问题的处理方法
1.(2017河北五校联考,5)直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为( )
A.2x+3y-12=0 B.2x-3y-12=0
C.2x-3y+12=0 D.2x+3y+12=0
答案 D
2.(2018重庆模拟,8)已知圆C1:(x+1)2+(y-1)2=4,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-2)2=4 B.(x-2)2+(y+2)2=4
C.(x+2)2+(y+2)2=4 D.(x-2)2+(y-2)2=4
答案 B
3.一束光线经过点P(2,3)射在直线l:x+y+1=0上,反射后经过点Q(1,1),则入射光线所在直线的方程为 .
答案 5x-4y+2=0
方法2 与圆有关的切线和弦长问题的处理方法
1.(2015山东,9,5分)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为 ( )
A.-53或-35 B.-32或-23
C.-54或-45 D.-43或-34
答案 D
2.(2018河北衡水中学五调,13)设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦长为23,则a的值是 .
答案 0
3.(2018山西晋中二模,14)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为 .
答案 7
过专题
【五年高考】
A组 统一命题·课标卷题组
1.(2018课标Ⅲ,6,5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )
A.[2,6] B.[4,8] C.[2,32] D.[22,32]
答案 A
2.(2017课标Ⅱ,9,5分)若双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )
A.2 B.3 C.2 D.233
答案 A
3.(2015课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )
A.26 B.8 C.46 D.10
答案 C
4.(2016课标Ⅲ,16,5分)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|= .
答案 4
5.(2014课标Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是 .
答案 [-1,1]
B组 自主命题·省(区、市)卷题组
1.(2018北京,7,5分)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为( )
A.1 B.2 C.3 D.4
答案 C
2.(2015重庆,8,5分)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( )
A.2 B.42 C.6 D.210
答案 C
3.(2018江苏,12,5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若AB·CD=0,则点A的横坐标为 .
答案 3
4.(2014江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是 .
答案 -3
5.(2014四川,14,5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是 .
答案 5
C组 教师专用题组
1.(2015广东,5,5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )
A.2x+y+5=0或2x+y-5=0 B.2x+y+5=0或2x+y-5=0
C.2x-y+5=0或2x-y-5=0 D.2x-y+5=0或2x-y-5=0
答案 A
2.(2014江西,9,5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( )
A.45π B.34π C.(6-25)π D.54π
答案 A
3.(2017江苏,13,5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PA·PB≤20,则点P的横坐标的取值范围是 .
答案 [-52,1]
4.(2015江苏,10,5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为 .
答案 (x-1)2+y2=2
5.(2014湖北,12,5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2= .
答案 2
6.(2014重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .
答案 4±15
7.(2015广东,20,14分)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程;
(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
解析 (1)圆C1的方程x2+y2-6x+5=0可化为(x-3)2+y2=4,所以圆心坐标为(3,0).
(2)设A(x1,y1),B(x2,y2)(x1≠x2),M(x0,y0),
则x0=x1+x22,y0=y1+y22.
由题意可知直线l的斜率必存在,设直线l的方程为y=tx.
将上述方程代入圆C1的方程,化简得(1+t2)x2-6x+5=0.
由题意,可得Δ=36-20(1+t2)>0(*),x1+x2=61+t2,
所以x0=31+t2,代入直线l的方程,得y0=3t1+t2.
因为x02+y02=9(1+t2)2+9t2(1+t2)2=9(1+t2)(1+t2)2=91+t2=3x0,
所以x0-322+y02=94.
由(*)解得t2<45,又t2≥0,所以530),
因为☉H被直线x-y-1=0,x+y-3=0分成面积相等的四部分,所以圆心H(m,n)一定是两互相垂直的直线x-y-1=0,x+y-3=0的交点,易得交点坐标为(2,1),所以m=2,n=1.
又☉H截x轴所得线段的长为2,所以r2=12+n2=2.
所以☉H的方程为(x-2)2+(y-1)2=2.
(2)设N(x0,y0),由题意易知点M是PN的中点,
所以Mx0+a2,y02.
因为M,N两点均在☉H上,
所以(x0-2)2+(y0-1)2=2,①
x0+a2-22+y02-12=2,
即(x0+a-4)2+(y0-2)2=8,②
设☉I:(x+a-4)2+(y-2)2=8,
由①②知☉H与☉I:(x+a-4)2+(y-2)2=8有公共点,
从而22-2≤|HI|≤22+2,
即2≤(a-2)2+(1-2)2≤32,
整理可得2≤a2-4a+5≤18,
解得2-17≤a≤1或3≤a≤2+17,
所以实数a的取值范围是[2-17,1]∪[3,2+17].
思路分析 (1)先设出圆的标准方程,然后结合已知得到圆心坐标,最后由弦长求出半径即可;(2)先设出点N的坐标,依据M是PN的中点,得到点M的坐标,将N、M代入圆H的方程,进而得两相应圆有公共点,由此建立关于a的不等式,求解即可.