- 44.00 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020届一轮复习人教A版 证明不等式的基本方法 作业
解答题
1.设集合A={x|x2+x-6≤0},集合B为函数y=的定义域,则A∩B等于( )
A.(1,2) B.[1,2]
C.[1,2) D.(1,2]
解析:选D.A={x|x2+x-6≤0}={x|-3≤x≤2},由x-1>0得x>1,即B={x|x>1},所以A∩B={x|10,所以不等式的解集是.
4.若不等式x2-2x+5≥a2-3a对任意实数x恒成立,则实数a的取值范围为( )
A.[-1,4]
B.(-∞,-2]∪[5,+∞)
C.(-∞,-1]∪[4,+∞)
D.[-2,5]
解析:选A.x2-2x+5=(x-1)2+4的最小值为4,所以x2-2x+5≥a2-3a对任意实数x恒成立,
只需a2-3a≤4即可,解得-1≤a≤4.
5.(2018广州五校联考)已知函数f(x)=|x+3|+|x-1|,其最小值为t.
(1)求t的值;
(2)若正实数a,b满足a+b=t,求证:+≥.
(1)【解】因为|x+3|+|x-1|=|x+3|+|1-x|≥|x+3+1-x|=4,所以f(x)min=4,即t=4.
(2)【证明】由(1)得a+b=4,故+=1,+==+1++≥+2=+1=,当且仅当b=2a,即a=,b=时取等号,故+≥.
6.(2018湖北八校联考)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.
(1)证明:<;
(2)比较|1-4ab|与2|a-b|的大小,并说明理由.
(1)【证明】记f(x)=|x-1|-|x+2|=
由-2<-2x-1<0解得-0.
所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.
7.(2018广州模拟)已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(1)求实数m的值;
(2)若α,β≥1,f(α)+f(β)=4,求证:+≥3.
【解】(1)因为|x-m|+|x|≥|(x-m)-x|=|m|.
要使不等式|x-m|+|x|<2有解,则|m|<2,解得-2